首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clapp CH  McKown J  Xu H  Grandizio AM  Yang G  Fayer J 《Biochemistry》2000,39(10):2603-2611
Previous work has demonstrated that the ferric form of soybean lipoxygenase-1 will catalyze an elimination reaction on 12-iodo-cis-9-octadecenoic acid (12-IODE) to produce 9, 11-octadecadienoic acid and iodide ion. Elimination is accompanied by irreversible inactivation of the enzyme on 1 out of 10 turnovers. In the present work, 11,11-dideuterio-12-IODE (D(2)-12-IODE) was synthesized and used to demonstrate that both the elimination reaction and inactivation of the enzyme exhibit very large kinetic isotope effects. The rates with the deuterated compound are so low that the isotope effects are difficult to quantify, but they appear to be comparable to the isotope effects previously observed for the normal reaction catalyzed by lipoxygenase and much larger than can be explained by zero-point energy considerations. ESR spectroscopy was used to demonstrate that 12-IODE can reduce ferric lipoxygenase to the ferrous form, and a large isotope effect on this process was observed with D(2)-12-IODE. It is proposed that the pathway leading to reduction and inactivation by 12-IODE is initiated by homolytic cleavage of the C(11)-H bond. Elimination could be initiated either by homolytic or by heterolytic cleavage of this bond. The results suggest that very large isotope effects may be a general feature of C-H bond cleavages catalyzed by this enzyme.  相似文献   

2.
Soybean lipoxygenase-1 is inactivated by micromolar concentrations of the following hydrophobic thiols: 1-octanethiol, 12(S)-mercapto-9(Z)-octadecenoic acid (S-12-HSODE), 12(R)-mercapto-9(Z)-octadecenoic acid (R-12-HSODE), and 12-mercaptooctadecanoic acid (12-HSODA). In each case, inactivation is time-dependent and not reversed by dilution or dialysis. Inactivation requires 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13-HPOD), which suggests that it is specific for the ferric form of the enzyme. Lipoxygenase catalyzes an oxygenation reaction on each of the aforementioned thiols, as judged by the consumption of O(2). These reactions also require 13-HPOD. 1-Octanethiol is converted to 1-octanesulfonic acid, which was identified by GC/MS of its methyl ester. The rates of oxygen uptake for R- and S-12-HODE are about 5- and 2.5-fold higher than the rate with 1-octanethiol. The stoichiometries of inactivation imply that inactivation occurs on approximately 1 in 18 turnovers for 12-HSODA, 1 in 48 turnovers for 1-octanethiol, 1 in 63 turnovers for S-12-HSODE, and 1 in 240 turnovers for R-12-HSODE. These data imply that close resemblance to lipoxygenase substrates is not a crucial requirement for either oxidation or inactivation. Under the conditions of our experiments, inactivation was not observed with several more polar thiols: mercaptoethanol, dithiothreitol, L-cysteine, glutathione, N-acetylcysteamine, and captopril. The results imply that hydrophobic thiols irreversibly inactivate soybean lipoxygenase by a mechanism that involves oxidation at sulfur.  相似文献   

3.
Linoleic acid oxidation catalyzed by lipoxygenase (lipoxidase) activity in extracts of defatted corn germ does not terminate in the product, linoleic acid hydroperoxide, unless the lipoxygenase is first partially purified. If purification is not attempted, the hydroperoxide product exists only as a barely detectable intermediate in the synthesis of three products. One of these was identified as 9-hydroxy-10-oxo-cis-12-octadecenoic acid formed from the hydroperoxide by the enzyme, linoleate hydroperoxide isomerase. Another product, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, is believed to be formed by an isomerase also. The third product was the linoleate ester of one of the hydroxy-oxo-fatty acids, 9-(cis-9,cis-12-octadecadienoyl)-10-oxo-cis-12-octadecenoic acid. It is not known if the synthesis of the ester is enzyme-catalyzed. When a mixture of 13-hydroperoxy-cis-9,trans-11-octa-decadienoic acid and 9-hydroperoxy-trans-10,cis-12-octa-decadienoic acid from soybean lipoxygenase oxidation of linoleic acid was used as a substrate, 13-hydroxy-12-oxo-cis-9-octadecenoic acid and 9-hydroxy-12-oxo-trans-10-octadecenoic acid were formed as the major products of catalysis by linoleate hydroperoxide isomerase(s) from corn. Smaller quantities of 9-hydroxy-10-oxo-cis-12-octadecenoic acid and 13-hydroxy-10-oxo-trans-11-octadecenoic acid were also formed.  相似文献   

4.
Linoleic acid (18:2) is converted by prostaglandin endoperoxide synthase in particulate fractions and homogenates of fetal calf aorta to its 9- and 13-hydroperoxy metabolites. These intermediates are then either dehydrated to the corresponding oxo compounds or reduced to monohydroxy products. Alternatively, the hydroperoxyoctadecadienoic acids can be converted to epoxyhydroxyoctadecenoic acids, which are hydrolyzed to trihydroxy metabolites by epoxide hydrolases present in both particulate and cytosolic fractions from aorta. Linoleic acid (Km, 442 microM) is a much poorer substrate for prostaglandin endoperoxide synthase than is arachidonic acid (20:4) (Km, 48 microM). However, the oxygenation of 18:2 by particulate fractions from aorta is linear with time for at least 5 min, whereas the oxygenation of 20:4 is linear for only 15 s. Arachidonic acid strongly inhibits the conversion of 18:2 to monohydroxy (ID50, 10 microM) and trihydroxy (ID50, 140 microM) products. Linoleic acid has a similar, but much weaker effect on the formation of 6-oxoprostaglandin F1 alpha from 20:4. Substantial amounts of both the monohydroxy (9-hydroxy-10, 12-octadecadienoic acid and 13-hydroxy-9,11-octadecadienoic acid) and trihydroxy (9,10,11-trihydroxy-12-octadecenoic acid, 9,10,13-trihydroxy-11-octadecenoic acid and 9,12,13-trihydroxy-10-octadecenoic acid) metabolites of 18:2 were shown by gas chromatography-mass spectrometry to be formed from endogenous substrate during incubation of slices of fetal calf aorta in physiological medium. This raises the possibility that some of these products or their hydroperoxy precursors may have some biological significance.  相似文献   

5.
The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source.  相似文献   

6.
R J Auchus  D F Covey 《Biochemistry》1986,25(23):7295-7300
14,15-Secoestra-1,3,5(10)-trien-15-yne-3,17 beta-diol (1) is a mechanism-based inactivator of human placental 17 beta,20 alpha-hydroxysteroid dehydrogenase (estradiol dehydrogenase, EC 1.1.1.62). Inactivation with alcohol 1 requires NAD-dependent enzymic oxidation and follows approximately pseudo-first-order kinetics with a limiting t1/2 of 82 min and a "Ki" of 2.0 microM at pH 9.2 and 25 degrees C. At saturating concentrations of NAD, the initial rate of inactivation is slower than in the presence of 5 microM NAD, suggesting that cofactor binding to free enzyme impedes the inactivation process. Glutathione completely protects the enzyme from inactivation at both cofactor concentrations. Inactivation with 45 microM tritiated alcohol 1 followed by dialysis and gel filtration demonstrates a covalent interaction and affords an estimated stoichiometry of 1.4 molecules of steroid per subunit (2.8 per dimer). Chemically prepared 3-hydroxy-14,15-secoestra-1,3,5(10)-trien-15-yn-17-one (2) rapidly inactivates estradiol dehydrogenase with biphasic kinetics. From the latter phase, a Ki of 2.8 microM and a limiting t1/2 of 12 min at pH 9.2 were determined. Estradiol, NADH, and NAD all retard this latter inactivation phase. We propose that enzymatically generated ketone 2 inactivates estradiol dehydrogenase after its release from and return to the active site of free enzyme.  相似文献   

7.
The rapid inactivation of 3-HBA-6-hydroxylase by 100 microM diethylpyrocarbonate or 40 microM N-bromosuccinimide and protection offered by the substrate, 3-hydroxybenzoate, against these chemical modifications implicate the involvement of histidine and tryptophan in the catalytic activity of the enzyme. Inactivation of the enzyme by diethylpyrocarbonate followed pseudo-first-order kinetics, and an "n" value of 1.3 was obtained. Inactivation of the enzyme by N-bromosuccinimide was instantaneous and failed to follow pseudo-first-order kinetics. Distinct and incremental changes in the UV absorption, emission fluorescence, and near UV-CD spectra of the enzyme upon its titration with increasing concentrations of diethylpyrocarbonate or N-bromosuccinimide may be ascribed to modification and/or changes in the microenvironment of aromatic amino acid residue(s) such as tryptophan in the enzyme.  相似文献   

8.
A NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) from porcine kidney was purified to homogeneity by acid precipitation, blue agarose affinity chromatography, hydroxyapatite-ultrogel adsorption chromatography, DEAE-Sephadex ion-exchange chromatography and NAD(+)-agarose affinity chromatography. The specific activity of the homogeneous enzyme was 31.2 U/mg. The molecular mass of the native enzyme was estimated to be 55,000 Da, whereas that of SDS-treated enzyme was 29,000 Da indicating that the native enzyme was dimeric. Compared to human placental 15-OH-PGDH, porcine kidney enzyme gave a similar general amino acid residue distribution. Chemical modification of the enzyme with N-ethyl maleimide (3 microM), N-chlorosuccinimide (20 microM) or 2,4,6-trinitrobenzenesulfonic acid (2.5 microM) followed pseudo-first-order inactivation kinetics, and inactivation could be prevented by the presence of NAD+ (1 mM) but not of prostaglandin E1 (140 microM) indicating the involvement of cysteine, methionine and lysine residues in the coenzyme binding site. Inactivation by diethyl pyrocarbonate (1.25 mM) or phenylglyoxal (10 mM) also showed pseudo-first-order kinetics suggesting that histidine and arginine residues were catalytically or structurally important in the native enzyme. These studies provide new insights into the structure and function of 15-OH-PGDH.  相似文献   

9.
The sensitivity of soluble, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) of human placenta to inactivation by fatty acids was examined. Exposure to the unsaturated fatty acids oleic, arachidonic, linoleic and linolenic acid resulted in the loss of activity. Methyl and ethyl esters of oleic acid, the saturated fatty acid, stearic acid and prostaglandins E2 and F2 alpha were without effect. Inactivation by oleic acid required the fatty acid at levels above its critical micelle concentration, 50 microM, as estimated by light-scattering. Steroid substrates and inhibitors did not protect against inactivation. NAD+, NADH, NADP+ and NADPH did protect. The concentrations of NADP+, 50 microM, and NAD, 1.5 mM, necessary for complete protection were significantly greater than their respective Michaelis constants, 0.16 microM and 15.2 microM. The data suggest that soluble 17 beta-HSD can bind to fatty acid micelles and that the binding site(s) on the enzyme are at or near pyridine nucleotide binding sites.  相似文献   

10.
Fatty acid synthase of chicken liver is inactivated rapidly and irreversibly by incubation with chloroacetyl-CoA or with bromopyruvate. Inactivation by both reagents follows saturation kinetics, indicating the formation of an E ... I complex (dissociation constants of 0.36 microM for chloroacetyl-CoA and 31 microM for bromopyruvate) prior to alkylation. The limiting rate constants are 0.15 s-1 for bromopyruvate and 0.041 s-1 for chloroacetyl-CoA. Inactivation by both reagents is protected by NADPH and 200 mM KCl, and by saturating amounts of thioester substrates which reduced the limiting rate constants 6.5-30-fold. Active-site-directed reaction of chloroacetyl-CoA is supported by the ability of this compound to form a kinetically viable complex with the enzyme as competitive inhibitor of acetyl-CoA. Chloroacetyl-CoA interacts initially at the CoA binding pocket, since the nucleotide afforded competitive protection of inactivation and caused a large decrease in its affinity. Subsequently, the phosphopantetheine prosthetic group is alkylated. Evidence is presented to show that bromopyruvate competes with chloroacetyl-CoA for the same target site.  相似文献   

11.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

12.
Glutathione reductase from Escherichia coli is inactivated when incubated with either NADPH or NADH. The process is inversely dependent on the enzyme concentration. Inactivation is rapid and monophasic with 1 microM NADPH and 1 nM enzyme FAD giving a t1/2 of 1 min. Complex formation between NADPH and the two-electron reduced enzyme (EH2) at higher levels of NADPH protects against rapid inactivation. NADP+, produced in a side reaction with oxygen, also protects by forming a complex with EH2. These complexes make analysis of the concentration dependence of the inactivation process difficult. Inactivation with NADH, where complexes do not interfere, is slower but can be analyzed more readily. With 152 microM NADH and 5.4 nM enzyme FAD, the time required for 50% inactivation is 17 min. The process is markedly biphasic, reaching the final inactivation level after 5-7 h. Analysis of the relationship between the final level of inactivation with NADH and the enzyme concentration indicates that inactivation is due to dissociation of the normally dimeric enzyme. Thus, the position of the dimer-monomer equilibrium between an active dimeric two-electron reduced species and an inactive monomeric two-electron reduced form determines the enzyme activity. An apparent equilibrium constant (Kd) for dissociation of dimer obtained from the anaerobic concentration dependent inactivation curves is 220 nM. Enzyme inactivated with NADH can be reactivated with glutathione, and the reactivation kinetics are second order, monomer-monomer over 75% of the reaction with an average apparent association rate constant (ka) of 13.1 (+/- 5.5) X 10(6) M-1 min-1.  相似文献   

13.
Linoleate hydroperoxide isomerase was mainly located in the embryos of barley grains and its activity decreased during germination. The enzyme partially purified from embryos converted 9-hydroperoxy, trans-10, cis-12-octadecadienoic acid to 9-hydroxy, 10-oxo, cis-12-octadecenoic acid and 13-hydroxy, 10-oxo, trans-11-octadecenoic acid in the ratio of ca 2:1.  相似文献   

14.
Linoleic acid isomerase was identified as a multi-component enzyme system that consists of three enzymes that exist in both the membrane and soluble fractions of Lactobacillus plantarum. One enzyme (CLA-HY) is present in the membrane fraction, while two enzymes (CLA-DH and CLA-DC) exist in the soluble fraction. Three Escherichia coli transformants expressing CLA-HY, CLA-DH, and CLA-DC were constructed. Conjugated linoleic acid (CLA) and 10-hydroxy-12-octadecenoic acid were generated from linoleic acid only when all these three E. coli transformants were used as catalysts simultaneously. CLA-HY catalyzed the hydration reaction, a part of linoleic acid isomerization, to produce 10-hydroxy-12-octadecenoic acid. This multi-component enzyme system required oxidoreduction cofactors such as NADH and FAD. This is the first report to reveal enzymes genes and the elaborate machinery that synthesizes CLA, especially an important isomer of cis-9, trans-11-CLA, in lactic acid bacteria.  相似文献   

15.
High carbohydrate (65% glucose) diets containing cis-12-octadecenoic acid (12c-18:1) or trans-9,trans-12-octadecadienoic acid (9t,12t-18:2) were fed to weanling mice to investigate the influence of fatty acid structure on six hepatic enzyme activities involved in lipid metabolism. Results with these diets were compared to those with diets containing no fatty acids, saturated fatty acids; cis-9-octadecenoic acid (9c-18:1) and cis-9,cis-12-octadecadienoic acid (9c,12c-18:2). These comparisons show saturated fatty acids, 9c-18:1, 12c-18:1, and 9t,12t-18:2, had little or no influence on the activity levels of fatty acid synthetase, malic enzyme (EC 1.1.1.40)citrate cleavage enzyme (EC 4.1.3.8), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44) and acetyl-CoA carboxylase (EC 6.4.1.2). Neither 12c-18:1 nor 9t,12t-18:2 produced the dramatic enzyme-lowering effect exhibited by the diet containing 9c,12c-18:2 when compared to the diet devoid of fat. Thus, both the 9 and 12 bonds must be present in the same molecule. Also, at least one and probably both bonds must be in the cis configuration to depress liver enzyme activities. Capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were both used for analysis of the methyl esters derived from the hepatic lipids. The GC and GC-MS data provided (a) direct evidence for incorporation of both isomers into hepatic lipids and (b) indirect evidence that 9t,12t-18:2 lowered liver delta 9-desaturase activity. In addition, since these products were found in the complex liver lipids, there is no doubt that the various enzymes concerned with activation and acylation utilize both of these isomeric fatty acids as substrates.  相似文献   

16.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

17.
Poliovirus type 1, coxsackievirus type A9, and echovirus type 7 were inactivated by sodium bisulfite and ascorbic acid. Inactivation rates depended upon concentration, temperature, and pH. RNA infectivity was lost during inactivation; the capsid was also altered by these inactivating agents, as determined by enzyme sensitivity assays and by tests of adsorption to cells. Structural modifications of the virus particles were not identical, suggesting that the mechanism of inactivation by ascorbic acid differs from that of sodium bisulfite.  相似文献   

18.
Poliovirus type 1, coxsackievirus type A9, and echovirus type 7 were inactivated by sodium bisulfite and ascorbic acid. Inactivation rates depended upon concentration, temperature, and pH. RNA infectivity was lost during inactivation; the capsid was also altered by these inactivating agents, as determined by enzyme sensitivity assays and by tests of adsorption to cells. Structural modifications of the virus particles were not identical, suggesting that the mechanism of inactivation by ascorbic acid differs from that of sodium bisulfite.  相似文献   

19.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

20.
The soybean lipoxygenase I oxygenates the unusual substrate 12-keto-(9Z)-octadecenoic acid methyl ester as indicated by oxygen uptake and spectral changes of the incubation mixture. The main oxygenation products have been isolated by HPLC and identified as 9,12-diketo-(10E)-octadecenoic acid methyl ester and 12-keto-(10E)-dodecenoic acid methyl ester by UV and IR spectroscopy, cochromatography with an authentic standard, gas chromatography/mass spectroscopy, and 1H NMR. In the formation of both compounds the oxygenase and hydroperoxidase activities of the enzyme appear to be involved. These data and the earlier results on the oxygenation of furanoic fatty acids (Boyer et al., 1979) indicate that the lipoxygenase reaction is not restricted to substrates containing a 1,4-pentadiene structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号