首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
The Rop GTPase switch controls multiple developmental processes in Arabidopsis   总被引:21,自引:0,他引:21  
Li H  Shen JJ  Zheng ZL  Lin Y  Yang Z 《Plant physiology》2001,126(2):670-684
G proteins are universal molecular switches in eukaryotic signal transduction. The Arabidopsis genome sequence reveals no RAS small GTPase and only one or a few heterotrimeric G proteins, two predominant classes of signaling G proteins found in animals. In contrast, Arabidopsis possesses a unique family of 11 Rop GTPases that belong to the Rho family of small GTPases. Previous studies indicate that Rop controls actin-dependent pollen tube growth and H(2)O(2)-dependent defense responses. In this study, we tested the hypothesis that the Rop GTPase acts as a versatile molecular switch in signaling to multiple developmental processes in Arabidopsis. Immunolocalization using a general antibody against the Rop family proteins revealed a ubiquitous distribution of Rop proteins in all vegetative and reproductive tissues and cells in Arabidopsis. The cauliflower mosaic virus 35S promoter-directed expression of constitutively active GTP-bound rop2 (CA-rop2) and dominant negative GDP-bound rop2 (DN-rop2) mutant genes impacted many aspects of plant growth and development, including embryo development, seed dormancy, seedling development, lateral root initiation, morphogenesis of lateral organs in the shoot, shoot apical dominance and growth, phyllotaxis, and lateral organ orientation. The rop2 transgenic plants also displayed altered responses to the exogenous application of several hormones, such as abscisic acid-mediated seed dormancy, auxin-dependent lateral shoot initiation, and brassinolide-mediated hypocotyl elongation. CA-rop2 and DN-rop2 expression had opposite effects on most of the affected processes, supporting a direct signaling role for Rop in regulating these processes. Based on these observations and previous results, we propose that Rop2 and other members of the Rop family participate in multiple distinct signaling pathways that control plant growth, development, and responses to the environment.  相似文献   

2.
The control of plant growth, differentiation, and development is considered in relation to the involvement of monomeric GTP-binding proteins (mG-proteins) in the extra-and intracellular signal transduction. The principal attention is paid to Rop mG-proteins, unique small GTPases of eukaryotic cells functioning during various developmental stages of plants, from pollen tube and root hair growth to plant responses to biotic and abiotic stresses.  相似文献   

3.
Lin Y  Wang Y  Zhu JK  Yang Z 《The Plant cell》1996,8(2):293-303
The Rho family GTPases function as key molecular switches, controlling a variety of actin-dependent cellular processes, such as the establishment of cell polarity, cell morphogenesis, and movement in diverse eukaryotic organisms. A novel subfamily of Rho GTPases, Rop, has been identified in plants. Protein gel blot and RNA gel blot hybridization analyses indicated that one of these plant Rho GTPases, Rop1, is expressed predominantly in the male gametophyte (pollen and pollen tubes). Cell fractionation analysis of pollen tubes showed that Rop is partitioned into soluble and particulate fractions. The particulate Rop could be solubilized with detergents but not with salts, indicating that it is tightly bound to membranes. The membrane association appears to result from membrane anchoring via a geranylgeranyl group because an in vitro isoprenylation assay demonstrated that Rop1Ps is geranylgeranylated. Subcellular localization, using indirect immunofluorescence and confocal microscopy, showed that Rop is highly concentrated in the cortical region of the tube apex and in the periphery of the generative cell. The cortical Rop protein at the apex forms a gradient with decreasing concentration from tip to base and appears to be associated with the plasma membrane. These results suggest that the apical Rop GTPase may be involved in the signaling mechanism that controls the actin-dependent tip growth of pollen tubes. Localization of the Rop GTPase to the periphery of the generative cell is analogous to that of myosin, suggesting that the Rop GTPase plays an important role in the modulation of an actomyosin motor system involved in the movement of the generative cell.  相似文献   

4.
Intracellular signal transduction pathways transmit signals from the cell surface to various intracellular destinations, such as cytoskeleton and nucleus through a cascade of protein-protein interactions and activation events, leading to phenotypic changes such as cell proliferation, differentiation, and death. Over the past two decades, numerous signaling proteins and signal transduction pathways have been discovered and characterized. There are two major classes of signaling proteins: phosphoproteins (e.g., mitogen-activated protein kinases) and guanosine triphosphatases (GTPases; e.g., Ras and G proteins). They both function as molecular switches by addition and removal of one or more high-energy phosphate groups. This review discusses developments that seek to quantify the signal transduction processes with kinetic analysis and mathematical modeling of the signaling phosphoproteins and GTPases. These studies have provided insights into the sensitivity and specificity amplification of biological signals in integrated systems.  相似文献   

5.
ROPs:植物细胞内多种信号通路的分子开关   总被引:1,自引:0,他引:1  
植物RHO相关蛋白GTPases(RHO-related GTPases of plants, ROPs)是广泛存在于植物中的一类信号转导G蛋白(又称GTP结合蛋白),其通过结合GDP或GTP在非活性和活性状态间进行切换,进而在细胞极性控制、形态发育、激素水平调控、逆境反应等诸多植物生命活动的信号转导过程中扮演重要的分子开关角色。本文对ROP蛋白的结构域及基于蛋白质结构分类进行了介绍,并对拟南芥、玉米、水稻和大麦中的ROP家族蛋白质进行了系统进化分析。分析结果表明,这些植物中的ROP蛋白根据蛋白质结构域组成可分为Ⅰ类(typeⅠ)和Ⅱ类(typeⅡ)两种类型,而根据蛋白质序列的保守性可将其在植物中的ROP蛋白划分为4个进化枝。本综述不但对ROP蛋白作为分子开关在细胞内调控各种信号通路的机制进行了叙述,还对ROP在花粉管、根毛及植物表皮铺盖细胞极性发育,以及其他抗逆反应中的具体作用和机制及研究进展进行了阐述。本文还对ROP蛋白在ABA、IAA、BR等植物激素信号传导过程中的调控作用及研究进展进行了阐述。本文对植物ROP蛋白研究过程中尚未解决的问题,例如不同的ROP蛋白在同一个信号通路中的作用为何如此不同,以及ROP是如何协调不同的信号通路以共同调控一个植物发育或者生理过程等问题进行了总结,并在此基础上对未来的研究方向进行了展望。  相似文献   

6.
Polarized Rac/Rop GTPase signaling plays a key role in polar cell growth, which is essential for plant morphogenesis. The molecular and cellular mechanisms responsible for the polarization of Rac/Rop signaling during polar cell growth are only partially understood. Mutant variants of Rac/Rop GTPases lacking specific functions are important tools to investigate these mechanisms, and have been employed to develop a model suggesting that RhoGAP (GTPase activating protein) and RhoGDI (Guanine Nucleotide Dissociation Inhibitor) mediated recycling of Rac/Rop GTPases maintains apical polarization of Rac/Rop activity in pollen tubes, which elongate by ‘tip growth’ (an extreme form of polar cell growth). Despite the importance of these mutant variants for Rac/Rop functional characterization, their distinct intracellular distributions have not been thoroughly comparatively and quantitatively analyzed. Furthermore, support for the proposed RhoGAP and RhoGDI functions in apical polarization of Rac/Rop activity based on the analysis of in vivo interactions between these proteins and Rac/Rop GTPases has been missing. Here, extensive fluorescent protein tagging and bimolecular fluorescence complementation (BiFC) analyses are described of the intracellular distributions of wild type and mutant variants of the tobacco pollen tube Rac/Rop GTPase Nt‐Rac5, as well as of interactions of these Nt‐Rac5 variants with RhoGAP and RhoGDI proteins, in normally growing transiently transformed pollen tubes. Presented results substantially enhance our understanding of apical dynamics of pollen tube Rac/Rop signaling proteins, confirm previously proposed RhoGAP and RhoGDI functions in Rac/Rop polarization and provide important technical insights facilitating future in vivo protein localization and BiFC experiments in pollen tubes.  相似文献   

7.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

8.
GTP-binding proteins in plants: new members of an old family   总被引:17,自引:0,他引:17  
Regulatory guanine nucleotide-binding proteins (G proteins) have been studied extensively in animal and microbial organisms, and they are divided into the heterotrimeric and the small (monomeric) classes. Heterotrimeric G proteins are known to mediate signal responses in a variety of pathways in animals and simple eukaryotes, whiole small G proteins perform diverse functions including signal transduction, secretion, and regulation of cytoskeleton. In recent years, biochemical analyses have produced a large amount of information on the presence and possible functions of G proteins in plants. Further, molecular cloning has clearly demonstrated that plants have both heterotrimeric and small G proteins. Although the functions of the plant heterotrimeric G proteins are yet to be determined, expression analysis of an Arabidopsis G protein suggests that it may be involved in the regulation of cell division and differentiation. In contrast to the very few genes cloned thus far that encode heterotrimeric G proteins in plants, a large number of small G proteins have been identified by molecular cloning from various plants. In addition, several plant small G proteins have been shown to be functional homologues of their counterparts in animals and yeasts. Future studies using a number of approaches are likely to yield insights into the role plant G proteins play.  相似文献   

9.
10.
Development of specialized epidermal cells and structures plays a key role in plant tolerance to biotic and abiotic stresses. In the paddy field, the bright green leaf (bgl) mutants of rice (Oryza sativa) exhibit a luminous green color that is clearly distinguishable from the normal green of wild-type plants. Transmission and scanning electron microscopy revealed that small cuticular papillae (or small papillae; SP), nipple-like structures, are absent on the adaxial and abaxial leaf surfaces of bgl mutants, leading to more direct reflection and less diffusion of green light. Map-based cloning revealed that the bgl locus encodes OsRopGEF10, one of eleven OsRopGEFs in rice. RopGEFs (guanine nucleotide exchange factors for Rop) activate Rop/Rac GTPases, acting as molecular switches in eukaryotic signal transduction by replacing the bound GDP (inactive form) with GTP (active form) in response to external or internal cues. In agreement with the timing of SP initiation on the leaf epidermis, OsRopGEF10 is most strongly expressed in newly developing leaves before emergence from the leaf sheath. In yeast two-hybrid assays, OsRopGEF10 interacts with OsRac1, one of seven OsRac proteins; consistent with this, both proteins are localized in the plasma membrane. These results suggest that OsRopGEF10 activates OsRac1 to turn on the molecular signaling pathway for SP development. Together, our findings provide new insights into the molecular genetic mechanism of SP formation during early leaf morphogenesis.  相似文献   

11.
The small GTPases of Rop/Rho family is central regulators of important cellular processes in plants. Tobacco small G protein gene NtRop1 has been isolated; however, its roles in stress responses were unknown. In the present study, the genomic sequence of NtRop1 was cloned, which has seven exons and six introns, similar to the Rop gene structure from Arabidopsis. The NtRop1 gene was constitutively expressed in the different organs whereas the other six Rop genes from tobacco had differential expression patterns. The expression of the NtRop1 gene was moderately induced by methyl viologen, NaCl, and ACC treatments, but slightly inhibited by ABA treatment, with no significant induction by NAA treatment. The transgenic Arabidopsis plants overexpressing the NtRop1 showed increased salt sensitivity as can be seen from the reduced root growth and elevated relative electrolyte leakage. The hydrogen peroxide production was also promoted in the NtRop1-trangenic plants in comparison with wild type plants. These results imply that the NtRop1 may confer salt sensitivity through activation of H2O2 production during plant response to salt stress.  相似文献   

12.

Background  

Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins.  相似文献   

13.
Waterlogging or flooding are frequently or constitutively encountered by many plant species. The resulting reduction in endogenous O2 concentration poses a severe threat. Numerous adaptations at the anatomical, morphological and metabolic level help plants to either escape low oxygen conditions or to endure them. Formation of aerenchyma or rapid shoot elongation are escape responses, as is the formation of adventitious roots. The metabolic shift from aerobic respiration to anaerobic fermentation contributes to a basal energy supply at low oxygen conditions. Ethylene plays a central role in hypoxic stress signaling, and G proteins have been recognized as crucial signal transducers in various hypoxic signaling pathways. The programmed death of parenchyma cells that results in hypoxia-induced aerenchyma formation is an ethylene response. In maize, aerenchyma are induced in the absence of ethylene when G proteins are constitutively activated. Similarly, ethylene induced death of epidermal cells that cover adventitious roots at the stem node of rice is strictly dependent on heterotrimeric G protein activity. Knock down of the unique Gα gene RGA1 in rice prevents epidermal cell death. Finally, in Arabidopsis, induction of alcohol dehydrogenase with resulting increased plant survival relies on the balanced activities of a small Rop G protein and its deactivating protein RopGAP4. Identifying the general mechanisms of G protein signaling in hypoxia adaptation of plants is one of the tasks ahead.Key words: submergence, hypoxia, ethylene, G protein, reactive oxygen species, H2O2  相似文献   

14.
Lin Y  Seals DF  Randall SK  Yang Z 《Plant physiology》2001,125(1):241-251
Vacuoles are essential pleomorphic organelles that undergo dynamic changes during cell growth and differentiation in plants. How developmental signals are linked to vacuole biogenesis and development is poorly understood. In this report, we show that a Rop GTPase is localized to developing vacuoles in pea (Pisum sativum cv Extra Early Alaska). Rop belongs to the RHO family of Ras-related small GTP-binding proteins that are key molecular switches in a wide variety of eukaryotic signal transduction pathways. Using indirect immunofluorescence and an anti-Rop antibody, we showed that Rop proteins accumulate to high levels in rapidly growing tapetal cells of pea anthers. In these cells, Rop is localized to an endomembrane system that exists as dynamic pleomorphic networks: a perinuclear fine network decorated with punctate dots, a network composed of small spheres and tubules, and interconnected chambers. Colocalization with a tonoplast annexin VCaB42 shows that these dynamic networks represent the tonoplast. Our results suggest that the dynamic Rop-containing tonoplast networks represent a unique stage of vacuole development. The specific localization of Rop to developing vacuoles supports a role for Rop in signal transduction that mediates vacuole development in plants.  相似文献   

15.
Signal transduction gRABs attention   总被引:7,自引:0,他引:7  
Rab proteins are small GTPases involved in the regulation of vesicular membrane traffic. Research done in the past years has demonstrated that some of these proteins are under the control of signal transduction pathways. Still, several recent papers point out to a new unexpected role for this family of Ras-related proteins, as potential regulators of intracellular signaling pathways. In particular, several evidence indicate that members of the Rab family of small GTPases, through their effectors, are key molecules participating to the regulation of numerous signal transduction pathways profoundly influencing cell proliferation, cell nutrition, innate immune response, fragmentation of compartments during mitosis and apoptosis. Even more surprisingly, direct involvement of Rab proteins in signaling to the nucleus has been demonstrated. This review will focus on aspects of Rab proteins function connected to signal transduction and, in particular, connections between membrane traffic and other cell pathways will be examined.  相似文献   

16.
17.
18.
Tao LZ  Cheung AY  Wu HM 《The Plant cell》2002,14(11):2745-2760
The auxin indole-3-acetic acid is a key plant hormone essential for a broad range of growth and developmental processes. Here, we show that auxin activates Rac-like GTPases (referred to as Rac/Rop GTPases), and they in turn stimulate auxin-responsive gene expression. In particular, we show that overexpressing a wild-type tobacco Rac/Rop GTPase, NtRac1, and its constitutively active mutant form activates auxin-responsive gene expression. On the other hand, overexpressing dominant-negative NtRac1 and Rac-negative regulators, or reducing the endogenous NtRac1 level, suppresses auxin-induced gene expression. Furthermore, overexpression of NtRac1 activity or suppression of its expression in transgenic seedlings induces phenotypes that are similar to auxin-related defects. Together, our results show that a subset of plant Rac/Rop GTPases functions in mediating the auxin signal to downstream responsive genes.  相似文献   

19.
In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two-hybrid screening we have found three previously uncharacterized receptor-like protein kinases to be Rop GTPase-interacting molecules: a cysteine-rich receptor kinase, named NCRK, and two receptor-like cytosolic kinases from the Arabidopsis RLCK-VIb family, named RBK1 and RBK2. Uniquely for Rho-family small GTPases, plant Rop GTPases were found to interact directly with the protein kinase domains. Rop4 bound NCRK preferentially in the GTP-bound conformation as determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase RBK1 did not phosphorylate Rop4 in vitro , suggesting that the protein kinases are targets for Rop signalling. Bimolecular fluorescence complementation assays demonstrated that Rop4 interacted in vivo with NCRK and RBK1 at the plant plasma membrane. In Arabidopsis protoplasts, NCRK was hyperphosphorylated and partially co-localized with the small GTPase RabF2a in endosomes. Gene expression analysis indicated that the single-copy NCRK gene was relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK-VIb genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBK2 . We show that the developmental context of RBK1 gene expression is predominantly associated with vasculature and is also locally upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the existence of cross-talk between Rop GTPases and specific receptor-like kinases through direct molecular interaction.  相似文献   

20.
Wu G  Li H  Yang Z 《Plant physiology》2000,124(4):1625-1636
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号