首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the phospholipid composition of 14 type strains of marine proteobacteria of the genus Pseudoalteromonas showed that phospholipids are the main polar lipid constituents of membranes in these proteobacteria. The phospholipid patterns of the strains studied were found to be similar and involved five phospholipids typical of gram-negative bacteria, namely, phosphatidylethanolamine, phosphatidylglycerol, bisphosphatidic acid, lysophosphatidylethanolamine, and phosphatidic acid. The major phospholipids were phosphatidylethanolamine and phosphatidylglycerol, which add up to 89-97% of total phospholipids; bisphosphatidic acid was dominant among minor phospholipids. The prevalence of phosphatidylethanolamine (62-77% of total phospholipids) and the absence of diphosphatidylglycerol are the characteristic features of most bacteria of this genus. As in Escherichia coli, the phospholipid composition of the marine proteobacteria depended on the presence of magnesium in the medium.  相似文献   

2.
The study of the phospholipid composition of 14 type strains of marine proteobacteria of the genusPseudoalteromonas showed that phospholipids are the main polar lipid constituents of membranes in these proteobacteria. The phospholipid patterns of the strains studied were found to be similar and involved five phospholipids typical of gram-negative bacteria, namely, phosphatidylethanolamine, phosphatidylglycerol, bisphosphatidic acid, lysophosphatidylethanolamine, and phosphatidic acid. The major phospholipids were phosphatidylethanolamine and phosphatidylglycerol, which add up to 89–97% of the total phospholipids; bisphosphatidic acid was dominant among minor phospholipids. The prevalence of phosphatidylethanolamine (62–77% of the total phospholipids) and the absence of diphosphatidylglycerol are the characteristic features of most bacteria of this genus. As inEscherichia coli, the phospholipid composition of the marine proteobacteria depended on the presence of magnesium in the medium.  相似文献   

3.
Phospholipids and fatty acids of Neisseria gonorrhoeae.   总被引:9,自引:4,他引:5       下载免费PDF全文
The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed.  相似文献   

4.
To complement information on microbial communities in marine sediments that can be obtained using microbiological methods, we developed an analytical procedure to trace microbial lipids in environmental samples. We focused on analyzing intact phospholipids as these membrane constituents are known to be biomarkers for viable cells. Analysis of intact phospholipids from a fractionated and preconcentrated sediment extract was achieved using liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). The combined analysis of phospholipid types and their fatty acid substituents allowed a differentiation between various groups of microorganisms living in the sediment. For comparison three strains of marine sulfate-reducing bacteria (SRB) were analysed for their lipid content.  相似文献   

5.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids 15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0. The high level of branched fatty acids (38-45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

6.
The composition, subcellular distribution and rate of synthesis of phospholipids were compared in ethambutol susceptible and resistant strains ofMycobacterium smegmatis. Significant quantitative alterations in phospholipids accompanied the acquisition of resistance, whereas fatty acyl group composition of total phospholipid remained the same in ethambutol resistant and susceptible strains. Cell wall of resistant strain exhibited an accumulation of phospholipids and a decrease in the degree of unsaturation of phospholipid fatty acyl groups. Changes in the cell wall phospholipid composition may contribute to resistance ofMycobacterium smegmatis to ethambutol.  相似文献   

7.
《BBA》2023,1864(4):149001
Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions.  相似文献   

8.
Bacterial physiological responses to toluene exposure were investigated in five reference pseudomonad strains that express different toluene degradation pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1. The intact phospholipids of these archetypes, grown with and without toluene, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. All strains showed significant changes in phospholipid content and composition as an adaptive response to toluene exposure, as well as considerable diversity in response mechanisms. For example, the phospholipid content of toluene-grown PKO1, F1, and KR1 were 10.9–34.7% of that found in succinate-grown strains, while the phospholipid content of mt-2 and G4 increased by 56% and 94%, respectively, when grown on toluene. In addition, PKO1, F1, and mt-2 responded to the presence of toluene by synthesizing more phosphatidylglycerol, whereas G4 and KR1 synthesized phospholipids with polyunsaturated fatty acids (C18:2) on one or both of the sn-2 positions. These changes in phospholipid composition and concentration probably reflect the sensitivity and degree of tolerance of these strains to toluene, and suggest that different mechanisms are utilized by dissimilar bacteria to maintain optimal lipid ordering in the presence of such environmental pollutants. Received: 13 October 1999 / Received revision: 16 February 2000 / Accepted: 25 February 2000  相似文献   

9.
The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, has been shown to be affected by bile. The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long-chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids - marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria.  相似文献   

10.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids [15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0]. The high level of branched fatty acids (38–45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

11.
Microparticles in the circulation activate the coagulation system and may activate the complement system via C-reactive protein upon conversion of membrane phospholipids by phospholipases. We developed a sensitive and reproducible method to determine the phospholipid composition of microparticles. Samples were applied to horizontal, one-dimensional high-performance thin-layer chromatography (HPTLC). Phospholipids were separated on HPTLC by chloroform:ethyl acetate:acetone:isopropanol:ethanol:methanol:water:acetic acid (30:6:6:6:16:28:6:2); visualized by charring with 7.5% Cu-acetate (w/v), 2.5% CuSO(4) (w/v), and 8% H(3)PO(4) (v/v) in water; and quantified by photodensitometric scanning. Erythrocyte membranes were used to validate the HPTLC system. Microparticles were isolated from plasma of healthy individuals (n = 10). On HPTLC, mixtures of (purified) phospholipids, i.e., lysophosphatidylcholine, phosphatidylcholine (PC), sphingomyelin (SM), lysophosphatidylserine, phosphatidylserine, lysophosphatidylethanolamine, phosphatidylethanolamine (PE), and phosphatidylinositol, could be separated and quantified. All phospholipids were detectable in erythrocyte ghosts, and their quantities fell within ranges reported earlier. Quantitation of phospholipids, including extraction, was highly reproducible (CV < 10%). Microparticles contained PC (59%), SM (20.6%), and PE (9.4%), with relatively minor (<5%) quantities of other phospholipids. HPTLC can be used to study the phospholipid composition of cell-derived microparticles and may also be a useful technique for the analysis of other samples that are available only in minor quantities.  相似文献   

12.
Hexachlorobenzene (HCB) alters phospholipid and heme metabolisms in the liver and Harderian gland. The effects of HCB on phospholipid metabolism, in an organ considered to be non-responsive to its porphyrinogenic effects, remain to be studied. Therefore, as the brain is an organ with this feature, this paper analyzes the effects of HCB on brain phospholipid composition in order to investigate if there is any relationship between HCB-induced porphyrin metabolism disruption and phospholipid alterations. For this purpose, a time-course study of HCB effects on brain phospholipids was performed in two strains of rats differing in their susceptibility to acquire hepatic porphyria: Chbb THOM (low); and Wistar (high). This paper shows for the first time that rat brain phospholipids are affected by HCB exposure. Comparative studies show that HCB-induced disturbances in brain phospholipid patterns are time and strain-dependent. Thus, whereas major phospholipids, phosphatidylcholine and phosphatidylethanolamine were more altered in Wistar rats, minor phospholipids, phosphatidylinositol and phosphatidylserine were more affected in Chbb THOM rats. HCB intoxication led to a sphingomyelin/phosphatidylcholine molar ratio lower than the normal, in both strains. As was expected, brain porphyrin content was not altered by HCB intoxication in either strain. It can be concluded that HCB is able to alter brain phospholipid metabolism in a strain-dependent fashion, and in the absence of alterations in brain heme metabolism. In addition, HCB-induced disturbances in brain phospholipids were not related to the degree of hepatic porphyria achieved by the rats.  相似文献   

13.
Methane-forming bacteria contain unusual phytanylglycerol ether phospholipids which can be extracted from the bacteria in sediments and assayed quantitatively by high performance liquid chromatography (HPLC). In this procedure the lipids were extracted, the phospholipids recovered, hydrolyzed, purified by thin layer chromatography, derivatized and assayed by HPLC. Ether lipids were recovered quantitatively from Methanobacterium thermoautotrophicum and sediments at levels as low as 8 × 10?14 moles. In freshwater and marine sediments the flux of methane to the atmosphere and the methane levels in the pore water reflects the recovery of the phytanyl glycerol ether lipid ‘signature’. The proportion of the ether phospholipid to the total recoverable phospholipid was highest in anaerobic digester sewage sludge and deeper subsurface freshwater sediment horizons.  相似文献   

14.
Phospholipid composition of 10 Bifidobacterium strains of human intestinal origin and of 9 Lactobacillus strains was determined by quantitative two-dimensional thin-layer chromatography. Phospholipids of three Bifidobacterium strains from honey bees and of two strains from bovine rumen liquor were qualitatively investigated. Diphosphatidylglycerol and phosphatidylglycerol were present in strains of both genera. All Bifidobacterium strains contained as specific phospholipids a new polyglycerolphospholipid, compound 15, and its lyso derivatives, earlier detected in B. bifidum var. pennsylvanicus. Also, lyso compounds of diphosphatidylglycerol and alanyl phosphatidylglycerol were only present in this genus in variable amounts. Lysyl phosphatidylglycerol was the only ninhydrin-positive phospholipid in seven Lactobacillus strains. In L. delbrückii and L. helveticus it was absent and partially replaced by an unidentified ninhydrin-negative phospholipid. The differences in phospholipid composition between bifidobacteria and lactobacilli may be another argument to differentiate these two genera.  相似文献   

15.
The phospholipid composition of two strains ofBradyrhizobium is reported. In contrast to previous studies [Bunn CR, Elkan GH (1970) Can J Microbiol 17:291–295; and Gerson T, Patel JJ (1975) Appl Microbiol 30:193–198], we determined that phosphatidylglycerol is a major phospholipid within this bacterial genus. Furthermore, neither phosphatidylserine nor phosphatidylinositol was detected within lipid extracts derived from these bacteria. In addition to phosphatidylglycerol, other major phospholipids ofBradyrhizobium were shown to include phosphatidylcholine, phosphatidylethanolamine, and cardiolipin. Possible explanations for the discrepancies between the present study and those of previous investigations are discussed.  相似文献   

16.
Membrane fractions were prepared from Staphylococcus aureus H and 100 after dissolution of the cell walls by a lytic enzyme from Streptomyces griseus. Membranes were also prepared from the L-forms derived from the same strains. The membranes were analysed for protein, lipid, carbohydrate and RNA contents, and the fatty acid composition of the lipids was determined. A branched-chain saturated C(15) acid was the major component in all samples, and the correspondence between L-forms and parent bacteria was fairly close. The lipids were separated into non-polar-lipid, glycolipid and phospholipid fractions; the L-forms contained a little more neutral lipid and much more glycolipid than the parent bacteria. In all membranes the glycolipid, which accounted for all the carbohydrate present, was a diglucosyl diglyceride. The major phospholipids of the protoplast membranes were phosphatidylglycerol and some lipoamino acids (lysine and a little alanine). On the other hand, diphosphatidylglycerol was the chief phospholipid found in L-form membranes.  相似文献   

17.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37°C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids.We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

18.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37 degrees C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids. We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

19.
The phospholipid composition of 8 Escherichia coli strains differing in their capacity for survival in the air with a relative humidity of 30% has been studied. The study has revealed that, irrespective of the phase of growth and the nature of the culture medium, the capacity of E. coli cells for survival in the air is related to their phospholipid composition, this capacity being the higher, the greater the content of total phospholipids and cardiolipin and the lower the concentration of phosphatidyl glycerine.  相似文献   

20.
Phospholipase A2 (Naja naja), the nonpenetrating dye trinitrobenzene sulfonate, and the penetrating dye dinitrofluorobenzene, were used to determine the transmembrane distributions of phospholipids of mitochondria and glyoxysomes isolated from endosperm tissue of castor bean (Ricinus communis L. var. Hale). These studies indicated that the phospholipid distributions were distinctly asymmetric in the accessible (reacted with the probes without total membrane disruption by detergents) pools of the glyoxysomal and inner mitochondrial membranes, but more nearly symmetric in the outer mitochondrial membrane. However, significant quantities of the phospholipids of the mitochondrial membranes were inaccessible to the probes used. An increased accessibility of the phospholipids of all membranes following Triton X-100 dispersion was found, and protein to phospholipid ratios in organelle membranes were found to correlate inversely with the accessibility of the phospholipids to the probes. The inaccessible phospholipids may be involved in lipid-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号