首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
布鲁氏菌毒力因子研究进展   总被引:1,自引:0,他引:1  
布鲁氏菌是一种革兰氏阴性、兼性胞内寄生菌,可引起人畜共患病布鲁氏菌病。布鲁氏菌致病机制复杂,可通过表达多种毒力因子等方式躲避或抑制宿主免疫系统的攻击并发挥其对机体的致病效应,实现其在宿主体内的长期存活。因此,布鲁氏菌病易转化为慢性感染。本文对目前已发现的多种布鲁氏菌毒力因子相关研究进展进行综述,以期进一步认识布鲁氏菌病的致病机理,为布鲁氏菌病防治提供参考。  相似文献   

2.
申克孢子丝菌是一种重要的双相型真菌,其引起的孢子丝菌病是一种常见的侵袭性皮肤感染.研究该菌毒力因子及宿主对其抗感染免疫对于深入了解其致病性及防治该病具有重要意义.该文介绍了申克孢子丝菌毒力因子及宿主对其抗感染免疫方面的研究进展.  相似文献   

3.
非编码RNA(non-coding RNAs,ncRNAs)在细胞增殖、发育、分化、代谢、信号转导以及免疫调控中发挥重要调节作用。越来越多的研究证明,ncRNA在胞内病原菌的致病性和免疫逃逸中发挥重要调控作用。一方面ncRNA是细菌代谢、群体感应和毒力因子表达的调控因子,与胞内病原菌的致病性密切相关;另一方面ncRNA在调节宿主抗胞内病原菌免疫应答中发挥重要作用,深入研究ncRNA如何调节宿主免疫应答将有助于胞内菌免疫逃逸机制的研究。就非编码RNA在胞内病原菌免疫逃逸和致病中的作用作一综述。  相似文献   

4.
布鲁氏菌病是由布鲁氏菌引起的一种人畜共患性传染病,可以对畜牧业生产和人类健康造成严重的危害。布鲁氏菌是兼性胞内寄生菌,在长期与宿主免疫系统的相互作用中,进化出了多种逃避宿主免疫应答的机制。该文主要概述了布鲁氏菌胞内循环过程和逃避宿主先天性免疫应答和适应性免疫应答的机制,以及通过激活非典型自噬途径、抑制细胞凋亡、调控细胞焦亡等方式建立慢性感染的策略,以期为进一步深入研究布鲁氏菌病以及病原与宿主的相互作用提供参考。  相似文献   

5.
非洲猪瘟病毒(African swine fever virus,ASFV)拥有多种逃逸宿主免疫应答的策略,造成病毒难以被宿主清除。cGAS-STING信号通路介导的天然免疫在抗ASFV感染中发挥了重要作用,然而病毒编码的多个蛋白靶向该通路中的不同分子以拮抗宿主的I型干扰素应答。利用基因编辑技术敲除这些病毒基因后,ASFV对宿主的致病性降低,成为基因缺失疫苗的研制潜在靶点。本文对目前已知参与调控宿主cGAS-STING信号通路的病毒蛋白进行总结,旨在阐明这些蛋白免疫逃逸cGAS-STING信号通路的分子机制,加深对ASFV免疫逃逸策略的理解,以期为ASFV致病机制研究与疫苗创制提供参考。  相似文献   

6.
布鲁氏菌是布鲁氏菌病的病原体,能引起人类慢性感染,造成家畜流产和不孕.在不同种布鲁氏菌中,羊种布鲁氏菌毒力最强,在中国布鲁氏菌病流行中占主导地位.目前,还没有安全的用于预防人类布鲁氏菌感染的疫苗.用于预防家畜布鲁氏菌感染的弱毒活疫苗产生的抗体能够干扰对免疫动物感染布鲁氏菌野毒的诊断,从而对根除布鲁氏菌病的计划实施有负面影响.然而,羊种布鲁氏菌免疫蛋白质谱目前还不完善.为了研制更安全、有效且能区分野毒感染的疫苗,本研究应用免疫蛋白质组学技术筛选羊种布鲁氏菌疫苗株M5的免疫反应性蛋白.经二维电泳结合免疫杂交技术筛选到88个具有免疫反应性的蛋白质点,后经质谱鉴定其归属于61个蛋白,包括许多新的免疫反应性蛋白,如延伸因子G,F0F1ATP合成酶亚单位??,OMP1.本研究为布鲁氏菌病疫苗研制提供了许多免疫反应性候选蛋白.  相似文献   

7.
EB病毒(Epstein-Barr Virus,EBV)属于γ疱疹病毒科,是第一个被发现与人类肿瘤相关的DNA病毒。EB病毒通过激活Toll样受体(Toll like receptors,TLRs)信号通路,诱导I型干扰素的大量释放和功能性的自噬机制,从而引起机体的免疫应答。然而,相对于其他疱疹病毒,EB病毒已进化出更为精细且错综复杂的机制来破坏和逃逸宿主的免疫系统,如限制自身蛋白表达、活化宿主的泛素-蛋白酶体系统、干扰或逆转自噬与泛素化修饰等。这些机制会引发EB病毒在宿主体内的持续性感染,导致宿主免疫功能失调,引发EB病毒相关疾病(如鼻咽癌、传染性单核细胞增多症等)。因此,研究EB病毒特异性的免疫调控机制不仅对深入理解EB病毒的潜伏性感染和致癌性至关重要,而且还将为EB病毒诱发的相关疾病的免疫预防与治疗鉴定出新的潜在靶点。此文主要阐述了EB病毒调控宿主免疫应答和逃逸先天免疫应答的分子机制。  相似文献   

8.
羊口疮病毒分子特征与免疫逃逸策略   总被引:2,自引:0,他引:2  
羊传染性脓疱皮炎(Contagious ecthyma)俗称羊口疮(Orf)是由羊口疮病毒(Orf virus,ORFV)引起的一种人畜共患传染病。ORFV是痘病毒科副痘病毒属的代表性成员之一,具有鲜明而独特的种属特征。在进化过程中,病毒捕获一系列免疫调节/致病性相关基因,通过各种表达产物协同性地限制宿主的免疫清除效应,以庇护种群的增殖和病毒粒子成熟。本文综述了ORFV的分子特征,着重分析了病毒主动干预宿主免疫应答、设计免疫逃逸的分子机制。明确病毒的免疫调节/致病性元件及其效应途径,有利于加深对ORFV生物学特性的理解,同时有利于针对Orf建立有效的防制。  相似文献   

9.
丙型肝炎病毒基因突变与免疫逃逸   总被引:1,自引:0,他引:1  
免疫逃逸(Immune evasion)是指病原体逃避机体免疫监控的现象。在宿主和病毒的长期共同进化过程中,病毒形成了各种逃选机制以逃避宿主的免疫监控,其中病毒基因变异是最主要机制。丙型肝炎病毒(Hepatitis C virus,HCV)在感染个体中表现出极高的基因异质性,能有效地逃逸机体免疫识剐和破坏宿主免疫应答的能力,HCV还可侵袭免疫细胞来抑制机体的免疫功能,而建立HCV持续性感染。了解HCV病毒突变与免疫逃逸机制将会为预防和控制丙型肝炎提供依据。  相似文献   

10.
副溶血性弧菌是全球范围内威胁人体健康和食品安全的食源性致病菌。在感染人体的过程中,副溶血性弧菌通过将其效应蛋白直接注射至宿主细胞中操纵宿主,介导毒力的发挥,并进化出了一套完美的免疫逃逸策略,成功躲避免疫系统的攻击,引起急性肠胃炎、败血症和坏死性筋膜炎等疾病。副溶血性弧菌入侵上皮细胞,使胞内囊泡酸化,在与溶酶体融合之前逃逸到细胞质中,并且限制活性氧的产生,促进其在胞内生存。副溶血性弧菌可以诱导自噬,抑制NLRC4炎症小体介导的caspase-1的激活,还可以通过抑制TAK1激酶,阻止MAPK和NF-κB信号通路的激活,干扰免疫系统激活,借助多种手段共同协作从而达到免疫逃逸。本文系统总结了副溶血性弧菌现已研究的免疫逃逸机制,并对其可能存在的免疫逃逸机制提供了新的见解和方向,对深入了解副溶血性弧菌的致病机理和防控药物靶向位点的选择及研发具有重要意义。  相似文献   

11.
Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen.  相似文献   

12.
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity.  相似文献   

13.
锌作为一种结构、催化和信号的成分,在许多生理过程中起着关键的作用.它也是病原微生物生长所必需的,不但参与病原微生物代谢和各种毒力因子的调控,而且是病原微生物在宿主中感染和定殖所必需的.铜绿假单胞菌侵染宿主发挥毒力时,宿主会采取营养免疫的策略来限制体内环境中游离的锌离子浓度而抑制该病原菌的感染和定殖.反过来,铜绿假单胞菌...  相似文献   

14.
Intracellular pathogens have evolved machinery to evade the immune response in order to survive within a host. Histoplasma capsulatum, one of the intracellular pathogens, is a dimorphic fungus that dodges innate and adaptive immunity; it escapes immunity presumably through virulence factors that permit fungal survival and replication within the host. This review discusses immune factors that contribute to the control of H. capsulatum infection, several host-survival mechanisms H. capsulatum uses, and new techniques that have led to the identification of several H. capsulatum virulence factors, which will most likely aid in the discovery of many more.  相似文献   

15.
Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.  相似文献   

16.
Pathogen persistence in immune-competent hosts represents an immunological paradox. Increasing evidence suggests that some pathogens, such as, Leishmania major (L. major) have evolved strategies and mechanisms that actively suppress host adaptive immunity. If this notion is correct conventional vaccination therapies may be ineffective in enhancing host immunity, unless natural processes that suppress host immunity are also targeted therapeutically. The key problem is that the basis of pathogen persistence in immune-competent individuals is unknown, despite decades of intense research. This fact, coupled with poor health care and a dearth of effective treatments means that these diseases will remain a scourge on humans unless a better understanding of why the immune system tolerates such infections emerges from research. Indoleamine 2,3-dioxygenase (IDO) has been shown to act as a molecular switch regulating host responses, and IDO inhibitor drugs shown to possess potential in enhancing host immunity to established leishmania infections. It is hoped that this review will help stimulate and help generate critical new knowledge pertaining to the IDO mechanism and how to exploit it to suppress T cell mediated immunity, thus offer an innovative approach to studying the basis of chronic leishmania infection in mice.  相似文献   

17.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   

18.
Nutritional immunity is one of the strategies employed by the host to combat invading pathogens. It consists of actively controlling micronutrient bioavailability in the site of infection to hinder microbial growth. The role of manganese in cell biology and nutritional immunity for bacterial pathogens is well understood, but data regarding fungi are still limited. Fungi have evolved complex regulatory systems to acquire, distribute, and utilize manganese. Therefore, the disruption of manganese homeostasis in pathogenic fungi may lead to severe phenotypes and impact virulence. Because the host presents tools for manganese sequestration, and this condition can reduce the growth of important fungal pathogens such as Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, it is feasible to suppose that manganese nutritional immunity could play an important role in fungal infections. However, direct evidence is still lacking, and little is known about manganese homeostasis, nutritional immunity, and specific adaptations in individual species of fungal pathogens. In this opinion, we present the current body of knowledge about these subjects, arguing about manganese importance in host–pathogen interactions.  相似文献   

19.
Dendritic cells (DCs) serve as the primers of adaptive immunity, which is indispensable for the control of the majority of infections. Interestingly, some pathogenic intracellular bacteria can subvert DC function and gain the advantage of an ineffective host immune reaction. This scenario appears to be the case particularly with so‐called stealth pathogens, which are the causative agents of several under‐diagnosed chronic diseases. However, there is no consensus how less explored stealth bacteria like Coxiella, Brucella and Francisella cross‐talk with DCs. Therefore, the aim of this review was to explore the issue and to summarize the current knowledge regarding the interaction of above mentioned pathogens with DCs as crucial hosts from an infection strategy view. Evidence indicates that infected DCs are not sufficiently activated, do not undergo maturation and do not produce expected proinflammatory cytokines. In some cases, the infected DCs even display immunosuppressive behaviour that may be directly linked to the induction of tolerogenicity favouring pathogen survival and persistence.  相似文献   

20.
Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as “stealth pathogens” that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing “atypical” strains and a highly conserved “classical” core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号