首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Niemann-Pick C1 (NPC1) protein regulates the transport of cholesterol from late endosomes/lysosomes to other compartments responsible for maintaining intracellular cholesterol homeostasis. The present study examined the expression of the NPC1 gene and the distribution of the NPC1 protein that resulted from the transport of LDL-derived cholesterol through normal human fibroblasts. A key finding was that the transport of cholesterol from late endosomes/lysosomes to the sterol-regulatory pool at the endoplasmic reticulum, as determined by feedback inhibition of the sterol-regulatory element binding protein (SREBP) pathway, was associated with the downregulation of the NPC1 gene. Consistent with these results, fibroblasts incubated with LDL had decreased amounts of SREBP protein that interacted with sterol-regulatory element (SRE) sequences positioned within the NPC1 gene promoter region. Finally, partial colocalization of the NPC1 protein with late endosomes/lysosomes and distinct regions of the endoplasmic reticulum suggested that the NPC1 protein may facilitate the transport of cholesterol directly between these two compartments. Together, these results indicate that the transport of LDL-derived cholesterol from late endosomes/lysosomes to the sterol-regulatory pool, known to be regulated by the NPC1 protein, is responsible for promoting feedback inhibition of the SREBP pathway and downregulation of the NPC1 gene.  相似文献   

2.
3.
The fate of free cholesterol released after endocytosis of low-density lipoproteins remains obscure. Here we report that late endosomes have a pivotal role in intracellular cholesterol transport. We find that in the genetic disease Niemann-Pick type C (NPC), and in drug-treated cells that mimic NPC, cholesterol accumulates in late endosomes and sorting of the lysosomal enzyme receptor is impaired. Our results show that the characteristic network of lysobisphosphatidic acid-rich membranes contained within multivesicular late endosomes regulates cholesterol transport, presumably by acting as a collection and distribution device. The results also suggest that similar endosomal defects accompany the anti-phospholipid syndrome and NPC.  相似文献   

4.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   

5.
Niemann-Pick disease type C (NPC) is characterized by lysosomal storage of cholesterol and gangliosides, which results from defects in intracellular lipid trafficking. Most studies of NPC1 have focused on its role in intracellular cholesterol movement. Our hypothesis is that NPC1 facilitates the egress of cholesterol from late endosomes, which are where active NPC1 is located. When NPC1 is defective, cholesterol does not exit late endosomes; instead, it is carried along to lysosomal storage bodies, where it accumulates. In this study, we addressed whether cholesterol is transported from endosomes to the plasma membrane before reaching NPC1-containing late endosomes. Our study was conducted in Chinese hamster ovary cell lines that display the classical NPC biochemical phenotype and belong to the NPC1 complementation group. We used three approaches to test whether low density lipoprotein (LDL)-derived cholesterol en route to NPC1-containing organelles passes through the plasma membrane. First, we used cyclodextrins to measure the arrival of LDL cholesterol at the plasma membrane and found that the arrival of LDL cholesterol in a cyclodextrin-accessible pool was significantly delayed in NPC1 cells. Second, the movement of LDL cholesterol to NPC1-containing late endosomes was assessed and found to be normal in Chinese hamster ovary mutant 3-6, which exhibits defective movement of plasma membrane cholesterol to intracellular membranes. Third, we examined the movement of plasma membrane cholesterol to the endoplasmic reticulum and found that this pathway is intact in NPC1 cells, i.e. it does not pass through NPC1-containing late endosomes. Our data suggest that in NPC1 cells LDL cholesterol traffics directly through endosomes to lysosomes, bypassing the plasma membrane, and is trapped there because of dysfunctional NPC1.  相似文献   

6.
Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes.  相似文献   

7.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

8.
Niemann-Pick C 1 (NPC1) is a large integral membrane glycoprotein that resides in late endosomes, whereas NPC2 is a small soluble protein found in the lumen of lysosomes. Mutations in either NPC1 or NPC2 result in aberrant lipid transport from endocytic compartments, which results in lysosomal storage of a complex mixture of lipids, primarily cholesterol and glycosphingolipids. What are the biological functions of the NPC1 and NPC2 proteins? Here we review what is known about the intracellular itinerary of these two proteins as they facilitate lipid transport. We propose that the intracellular trafficking patterns of these proteins will provide clues about their function.  相似文献   

9.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

10.
Du X  Kazim AS  Brown AJ  Yang H 《Cell reports》2012,1(1):29-35
The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.  相似文献   

11.
Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.  相似文献   

12.
Vance JE 《FEBS letters》2006,580(23):5518-5524
Niemann-Pick C (NPC) disease is a progressive neurological disorder in which cholesterol, gangliosides and bis-monoacylglycerol phosphate accumulate in late endosomes/lysosomes. This disease is caused by mutations in either the NPC1 or NPC2 gene. NPC1 and NPC2 are involved in egress of lipids, particularly cholesterol, from late endosomes/lysosomes but the precise functions of these proteins are not clear. An important question regarding the function of NPC proteins is: why do mutations in these ubiquitously expressed proteins have such dire consequences in the brain? This review summarizes the roles of NPC proteins in lipid homeostasis particularly in the central nervous system.  相似文献   

13.
Modulation of cellular cholesterol transport and homeostasis by Rab11   总被引:11,自引:5,他引:6       下载免费PDF全文
To analyze the contribution of vesicular trafficking pathways in cellular cholesterol transport we examined the effects of selected endosomal Rab proteins on cholesterol distribution by filipin staining. Transient overexpression of Rab11 resulted in prominent accumulation of free cholesterol in Rab11-positive organelles that sequestered transferrin receptors and internalized transferrin. Sphingolipids were selectively redistributed as pyrene-sphingomyelin and sulfatide cosequestered with Rab11-positive endosomes, whereas globotriaosyl ceramide and GM2 ganglioside did not. Rab11 overexpression did not perturb the transport of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate–labeled low-density lipoprotein (LDL) to late endosomes or the Niemann-Pick type C1 (NPC1)-induced late endosomal cholesterol clearance in NPC patient cells. However, Rab11 overexpression inhibited cellular cholesterol esterification in an LDL-independent manner. This effect could be overcome by introducing cholesterol to the plasma membrane by using cyclodextrin as a carrier. These results suggest that in Rab11-overexpressing cells, deposition of cholesterol in recycling endosomes results in its impaired esterification, presumably due to defective recycling of cholesterol to the plasma membrane. The findings point to the importance of the recycling endosomes in regulating cholesterol and sphingolipid trafficking and cellular cholesterol homeostasis.  相似文献   

14.
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease.  相似文献   

15.
Background information. Within the group of lysosomal storage diseases, NPC1 [NPC (Niemann‐Pick type C) 1] disease is a lipidosis characterized by excessive accumulation of free cholesterol as well as gangliosides, glycosphingolipids and fatty acids in the late E/L (endosomal/lysosomal) system (Chen et al., 2005 ) due to a defect in late endosome lipid egress. We have previously demonstrated that expression of the small GTPase Rab9 in NPC1 cells can rescue the lipid transport block phenotype (Walter et al., 2003 ), albeit by an undefined mechanism. Results. To investigate further the mechanism by which Rab9 facilitates lipid movement from late endosomes we sought to identify novel Rab9 binding/interacting proteins. In the present study, we report that Rab9 interacts with the intermediate filament phosphoprotein vimentin and this interaction is altered by lipid accumulation in late endosomes, which results in inhibition of PKC (protein kinase C) and hypophosphorylation of vimentin, leading to late endosome dysfunction. Intermediate filament hypophosphorylation, aggregation and entrapment of Rab9 ultimately leads to transport defects and inhibition of lipid egress from late endosomes. Conclusions. These results reveal a previously unappreciated interaction between Rab proteins and intermediate filaments in regulating intracellular lipid transport.  相似文献   

16.
Cholesterol accumulation in an aberrant endosomal/lysosomal compartment is the hallmark of Niemann-Pick type C (NPC) disease. To gain insight into the etiology of the NPC compartment, we studied a novel Chinese hamster ovary cell mutant that was identified through a genetic screen and phenocopies the NPC1 mutation. We show that the M87 mutant harbors a mutation in a gene distinct from the NPC1 and HE1/NPC2 disease genes. M87 cells have increased total cellular cholesterol with accumulation in an aberrant compartment that contains LAMP-1, LAMP-2, and NPC1, but not CI-MPR, similar to the cholesterol-rich compartment in NPC mutant cells. We demonstrate that low-density lipoprotein receptor activity is increased 3-fold in the M87 mutant, and likely contributes to accumulation of excess cholesterol. In contrast to NPC1-null cells, the M87 mutant exhibits normal rates of delivery of endosomal cholesterol to the endoplasmic reticulum and to the plasma membrane. The preserved late endosomal function in the M87 mutant is associated with the presence of NPC1-containing multivesicular late endosomes and supports a role for these multivesicular late endosomes in the sorting and distribution of cholesterol. Our findings implicate cholesterol overload in the formation of an NPC-like compartment that is independent of inhibition of NPC1 or HE1/NPC2 function.  相似文献   

17.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

18.
There is growing evidence suggesting that cholesterol metabolism is linked to susceptibility to Alzheimer's disease by influencing amyloid beta-protein (Abeta) metabolism. However, the precise cellular linkage sites between cholesterol and Abeta have not yet been clarified. To address this issue, we investigated Niemann-Pick type C (NPC) model cells and NPC mutant cells, which showed aberrant cholesterol trafficking. We observed a remarkable Abeta accumulation in late endosomes of both NPC model cells and mutant cells where cholesterol accumulates and a significant accumulation in the NPC mouse brain. This Abeta accumulation was independent of its constitutive secretion and production through an endocytic pathway. In addition, it is characterized by a marked predominance of Abeta42 and insolubility in SDS, suggesting the presence of aggregated Abeta in late endosomes. Most importantly, Abeta accumulation is coupled with the cholesterol levels in late endosomes. Thus, late endosomes of NPC cells are a novel pool of aggregated Abeta42 as well as cholesterol, suggesting a direct interaction between aggregated Abeta and cholesterol.  相似文献   

19.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1(-/-) fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1(-/-) fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2(-/-) cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1(-/-) and NPC2(-/-) fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1(-/-) fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2(-/-) fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1(-/-) cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

20.
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号