首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
Vibrio cholerae, the cause of cholera, has two circular chromosomes. The parAB genes on each V. cholerae chromosome act to control chromosome segregation in a replicon-specific fashion. The chromosome I (ChrI) parAB genes (parAB1) govern the localization of the origin region of ChrI, while the chromosome II (ChrII) parAB genes (parAB2) control the segregation of ChrII. In addition to ParA and ParB proteins, Par systems require ParB binding sites (parS). Here we identified the parS sites on both V. cholerae chromosomes. We found three clustered origin-proximal ParB1 binding parS1 sites on ChrI. Deletion of these three parS1 sites abrogated yellow fluorescent protein (YFP)-ParB1 focus formation in vivo and resulted in mislocalization of the ChrI origin region. However, as observed in a parA1 mutant, mislocalization of the ChrI origin region in the parS1 mutant did not compromise V. cholerae growth, suggesting that additional (non-Par-related) mechanisms may mediate the partitioning of ChrI. We also identified 10 ParB2 binding parS2 sites, which differed in sequence from parS1. Fluorescent derivatives of ParB1 and ParB2 formed foci only with the cognate parS sequence. parABS2 appears to form a functional partitioning system, as we found that parABS2 was sufficient to stabilize an ordinarily unstable plasmid in Escherichia coli. Most parS2 sites were located within 70 kb of the ChrII origin of replication, but one parS2 site was found in the terminus region of ChrI. In contrast, in other sequenced vibrio species, the distribution of parS1 and parS2 sites was entirely chromosome specific.  相似文献   

2.
3.
Spo0J (ParB) of Bacillus subtilis is a DNA-binding protein that belongs to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. We found that Spo0J contributes to the positioning of the chromosomal oriC region, but probably not by recruiting the origin regions to specific subcellular locations. In wild-type cells during exponential growth, duplicated origin regions were generally positioned around the cell quarters. In a spo0J null mutant, sister origin regions were often closer together, nearer to midcell. We found, by using a Spo0J-green fluorescent protein [GFP] fusion, that the subcellular location of Spo0J was a consequence of the chromosomal positions of the Spo0J binding sites. When an array of binding sites (parS sites) were inserted at various chromosomal locations in the absence of six of the eight known parS sites, Spo0J-GFP was no longer found predominantly at the cell quarters, indicating that Spo0J is not sufficient to recruit chromosomal parS sites to the cell quarters. spo0J also affected chromosome positioning during sporulation. A spo0J null mutant showed an increase in the number of cells with some origin-distal regions located in the forespore. In addition, a spo0J null mutation caused an increase in the number of foci per cell of LacI-GFP bound to arrays of lac operators inserted in various positions in the chromosome, including the origin region, an increase in the DNA-protein ratio, and an increase in origins per cell, as determined by flow cytometry. These results indicate that the spo0J mutant produced a significant proportion of cells with increased chromosome content, probably due to increased and asynchronous initiation of DNA replication.  相似文献   

4.
Stable maintenance of P1 plasmids in Escherichia coli is mediated by a high affinity nucleoprotein complex called the partition complex, which consists of ParB and the E. coli integration host factor (IHF) bound specifically to the P1 parS site. IHF strongly stimulates ParB binding to parS, and the minimal partition complex contains a single dimer of ParB. To examine the architecture of the partition complex, we have investigated the DNA binding activity of various ParB fragments. Gel mobility shift and DNase I protection assays showed that the first 141 residues of ParB are dispensable for the formation of the minimal, high affinity partition complex. A fragment missing only the last 16 amino acids of ParB bound specifically to parS, but binding was weak and was no longer stimulated by IHF. The ability of IHF to stimulate ParB binding to parS correlated with the ability of ParB to dimerize via its C terminus. Using full and partial parS sites, we show that two regions of ParB, one in the center and the other near the C terminus of the protein, interact with distinct sequences within parS. Based on these data, we have proposed a model of how the ParB dimer binds parS to form the minimal partition complex.  相似文献   

5.
6.
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.  相似文献   

7.
The P1 ParB protein is required for active partition and thus stable inheritance of the plasmid prophage. ParB and the Escherichia coli protein integration host factor (IHF) participate in the assembly of a partition complex at the centromere-like site parS. In this report the role of IHF in the formation of the partition complex has been explored. First, ParB protein was purified for these studies, which revealed that ParB forms a dimer in solution. Next, the IHF binding site was mapped to a 29-base pair region within parS, including the sequence TAACTGACTGTTT (which differs from the IHF consensus in two positions). IHF induced a strong bend in the DNA at its binding site. Versions of parS which have lost or damaged the IHF binding site bound ParB with greatly reduced affinity in vitro and in vivo. Measurements of binding constants showed that IHF increased ParB affinity for the wild-type parS site by about 10,000-fold. Finally, DNA supercoiling improved ParB binding in the presence of IHF but not in its absence. These observations led to the proposal that IHF and superhelicity assist ParB by promoting its precise positioning at parS, a spatial arrangement that results in a high affinity of ParB for parS.  相似文献   

8.
L Radnedge  M A Davis    S J Austin 《The EMBO journal》1996,15(5):1155-1162
The cis-acting P1 and P7 parS sites are responsible for active partition of P1 and P7 plasmids to daughter cells. The two sites are similar but function only with ParB proteins from the correct species. Using hybrid ParB proteins and hybrid parS sites, we show that specificity is determined by contacts between bases that lie within two parS hexamer boxes and a region in the ParB C-terminus. We refer to these contacts as discriminator contacts. The P7 discriminator contacts were mapped to 3 and 2 bp respectively within the two parS hexamer boxes, and a 10 amino acid region of P7 ParB. Similarly placed residues of different sequence are responsible for the P1 discriminator contact. The discriminator contacts are distinct from previously identified DNA binding contacts which involve different ParB and parS regions. Deletion of the ParB C-terminus that makes the discriminator contact does not diminish in vitro binding but renders it species independent. The discriminator contact is therefore a negative function, interfering with binding of the wrong ParB, but not providing energy for the binding of the correct one. Similar discriminator contacts might be responsible for specificities seen among families of eukaryotic DNA binding proteins that share common binding motifs.  相似文献   

9.
10.
There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.  相似文献   

11.
Segregation of replicated chromosomes is an essential process in all organisms. How bacteria, such as the oval-shaped human pathogen Streptococcus pneumoniae, efficiently segregate their chromosomes is poorly understood. Here we show that the pneumococcal homologue of the DNA-binding protein ParB recruits S. pneumoniae condensin (SMC) to centromere-like DNA sequences (parS) that are located near the origin of replication, in a similar fashion as was shown for the rod-shaped model bacterium Bacillus subtilis. In contrast to B. subtilis, smc is not essential in S. pneumoniae, and Δsmc cells do not show an increased sensitivity to gyrase inhibitors or high temperatures. However, deletion of smc and/or parB results in a mild chromosome segregation defect. Our results show that S. pneumoniae contains a functional chromosome segregation machine that promotes efficient chromosome segregation by recruitment of SMC via ParB. Intriguingly, the data indicate that other, as of yet unknown mechanisms, are at play to ensure proper chromosome segregation in this organism.  相似文献   

12.
13.
We have used an in vivo plasmid-phi X174 packaging system to detect replication initiation signals in the region of the replication origin (oriC) of the Escherichia coli chromosome. The results obtained are summarized as follows: (i) Neither within nor close to oriC effective signals for initiating complementary strand synthesis could be detected. We conclude that initiation mechanisms for leading and lagging strand synthesis at oriC are not identical to any known priming mechanism of DNA synthesis. (ii) At least five signals that can function as complementary strand origins on ss-plasmid DNA are located in a region about 2000-3300 base pairs away from oriC in the clockwise direction on the chromosome. We suggest that these signals are protein n' like recognition sequences since they are dependent for their activity on dnaB protein and show sequence similarities to other putative n' recognition sequences. Surprisingly, some of the signals are located on the template for leading strand synthesis.  相似文献   

14.
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.  相似文献   

15.
16.
The chromosomal replication origin of the plasmidless derivative (TK21) from Streptomyces lividans 66 has been cloned as an autonomously replicating minichromosome (pSOR1) by using the thiostrepton resistance gene as a selectable marker. pSOR1 could be recovered as a closed circular plasmid which shows high segregational instability. pSOR1 was shown to replicate in Streptomyces coelicolor A3(2) and in S. lividans 66 and hybridized with DNA from several different Streptomyces strains. Physical mapping revealed that oriC is located on a 330-kb AseI fragment of the S. coelicolor A3(2) chromosome. DNA sequence analyses showed that the cloned chromosomal oriC region contains numerous DnaA boxes which are arranged in two clusters. The preferred sequence identified in the oriC region of Escherichia coli and several other bacteria is TTATCCACA. In contrast, in S. lividans, which has a high GC content, the preferred sequence for DnaA boxes appears to be TTGTCCACA.  相似文献   

17.
The P1 plasmid prophage is faithfully partitioned by a high affinity nucleoprotein complex assembled at the centromere-like parS site. This partition complex is composed of P1 ParB and Escherichia coli integration host factor (IHF), bound specifically to parS. We have investigated the assembly of ParB at parS and its stoichiometry of binding. Measured by gel mobility shift assays, ParB and IHF bind tightly to parS and form a specific complex, called I + B1. We observed that as ParB concentration was increased, a second, larger complex (I + B2) formed, followed by the formation of larger complexes, indicating that additional ParB molecules joined the initial complex. Shift Western blotting experiments indicated that the I + B2 complex contained twice as much ParB as the I + B1 complex. Using mixtures of ParB and a larger polyhistidine-tagged version of ParB (His-ParB) in DNA binding assays, we determined that the initial I + B1 complex contains one dimer of ParB. Therefore, one dimer of ParB binds to its recognition sequences that span an IHF-directed bend in parS. Once this complex forms, a second dimer can join the complex, but this assembly requires much higher ParB concentrations.  相似文献   

18.
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This "silencing" was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.  相似文献   

19.
In Escherichia coli, initiation of chromosome replication requires that DnaA binds to R boxes (9-mer repeats) in oriC, the unique chromosomal replication origin. At the time of initiation, integration host factor (IHF) also binds to a specific site in oriC. IHF stimulates open complex formation by DnaA on supercoiled oriC in cell-free replication systems, but it is unclear whether this stimulation involves specific changes in the oriC nucleoprotein complex. Using dimethylsulphate (DMS) footprinting on supercoiled oriC plasmids, we observed that IHF redistributed prebound DnaA, stimulating binding to sites R2, R3 and R5(M), as well as to three previously unidentified non-R sites with consensus sequence (A/T)G(G/C) (A/T)N(G/C)G(A/T)(A/T)(T/C)A. Redistribution was dependent on IHF binding to its cognate site and also required a functional R4 box. By reducing the DnaA level required to separate DNA strands and trigger initiation of DNA replication at each origin, IHF eliminates competition between strong and weak sites for free DnaA and enhances the precision of initiation synchrony during the cell cycle.  相似文献   

20.
Plasmid-partition functions of the P7 prophage   总被引:12,自引:0,他引:12  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号