首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.  相似文献   

2.
Endothelium-derived microparticles (EMPs) are small vesicles released from endothelial cells in response to cell injury, apoptosis, or activation. Elevated concentrations of EMPs have been associated with many inflammatory and vascular diseases. EMPs also mediate long range signaling and alter downstream cell function. Unfortunately, the molecular and cellular basis of microparticle production and downstream cell function is poorly understood. We hypothesize that EMPs generated by different agonists will produce distinct populations of EMPs with unique protein compositions. To test this hypothesis, different EMP populations were generated from human umbilical vein endothelial cells by stimulation with plasminogen activator inhibitor type 1 (PAI-1) or tumor necrosis factor-alpha (TNF-alpha) and subjected to proteomic analysis by LC/MS. We identified 432 common proteins in all EMP populations studied. Also identified were 231 proteins unique to control EMPs, 104 proteins unique to PAI-1 EMPs and 70 proteins unique to TNF-alpha EMPs. Interestingly, variations in protein abundance were found among many of the common EMP proteins, suggesting that differences exist between EMPs on a relative scale. Finally, gene ontology (GO) and KEGG pathway analysis revealed many functional similarities and few differences between the EMP populations studied. In summary, our results clearly indicate that EMPs generated by PAI-1 and TNF-alpha produce EMPs with overlapping but distinct protein compositions. These observations provide fundamental insight into the mechanisms regulating the production of these particles and their physiological role in numerous diseases.  相似文献   

3.
Objective: Endothelial microparticles (EMPs) are considered as markers of endothelial dysfunction. In this study, we aimed to examine whether there is endothelial dysfunction in children with familial Mediterranean fever (FMF), hypothesizing that endothelial dysfunction would be present especially with acute-phase response in the active period of the disease.

Methods: This cross-sectional study included 65 FMF patients (41 attack free, 24 attack period) and 35 healthy controls. Circulating EMPs, serum amyloid A (SAA), and other inflammation markers were measured in all groups. Circulating EMPs were measured using flow cytometry. Study groups were compared for circulating EMP and inflammatory markers. The relationship between EMPs and the activation of the disease was evaluated.

Results: The levels of CD144+ and CD146+ EMPs in the FMF attack period group were significantly higher than those of the control group (p?p?+ and CD146+ EMP were significantly correlated with CRP.

Conclusions: Our results suggest that endothelial damage is present especially in the active period of the disease in children with FMF. The endothelial dysfunction becomes an overt parallel with inflammation.  相似文献   

4.
5.
PKC is required for activation of ROCK by RhoA in human endothelial cells   总被引:3,自引:0,他引:3  
Rho/Rho-kinase (ROCK) complex formation is the only proposed mechanism for ROCK activation. Rho/ROCK and PKC can exhibit a convergence of cellular effects such as suppression of endothelial nitric oxide synthase (eNOS) expression. We, therefore, investigated the role of PKC in RhoA/ROCK complex formation and activation linked to eNOS expression in cultured human umbilical vein endothelial cells. We showed that expression of constitutively active RhoA (Rho63) or ROCK (CAT) suppressed eNOS gene expression. This effect of Rho63 but not that of CAT was abolished by phorbol ester-sensitive PKC depletion. Accordingly, depletion or inhibition of PKC prevented ROCK activation by Rho63 without affecting RhoA/ROCK complex formation. Similarly, suppression of eNOS expression and activation of ROCK, but not RhoA by thrombin were prevented by PKC inhibition or depletion. These results indicate that RhoA/ROCK complex formation alone is not sufficient and PKC is required for RhoA-induced ROCK activation leading to eNOS gene suppression.  相似文献   

6.
7.
To clarify the mechanism of the stimulatory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on bone formation, we investigated the effect of pitavastatin, a newly developed statin, on expression of bone morphogenetic protein-2 (BMP-2) and osteocalcin in primary cultured human osteoblasts. Pitavastatin increased the expression level of mRNA for BMP-2, and much more effectively for osteocalcin. This stimulatory effect was abolished by the addition of geranylgeranyl pyrophosphate, an essential molecule for prenylation of small GTP-binding proteins such as Rho GTPase, but not by inhibitors of nitric oxide synthase and various protein kinases. Pitavastatin suppressed the Rho-associated kinase (Rho-kinase) activity. Hydroxyfasudil, a specific inhibitor of Rho-kinase, increased BMP-2 and osteocalcin expression. These mRNA levels were strongly suppressed by dexamethasone, but restored by co-treatment with hydroxyfasudil. These observations suggest that the Rho-kinase negatively regulates bone formation and the inhibition of Rho and Rho-kinase pathway is the major mechanism of the statin effect on bone. Moreover, a Rho-kinase inhibitor may be a new therapeutic reagent for the treatment of osteoporosis such as glucocorticoid-induced osteoporosis.  相似文献   

8.
We previously demonstrated statins to enhance cytokine-mediated nitric oxide (NO) synthesis in vascular smooth muscle cells (VSMC). To clarify the mechanism by which this occurs, we evaluated the effects of fluvastatin in lipopolysaccharide (LPS)-stimulated VSMC. NO production induced by LPS was dose-dependently enhanced by fluvastatin, as were iNOS mRNA levels and iNOS protein expression. Exogenous mevalonate and geranylgeranylpyrophosphate (GGPP) dampened the stimulatory effect of fluvastatin. A pull-down assay demonstrated fluvastatin to decrease levels of GTP-bound Rho A. Moreover, a Rho-kinase inhibitor, Y-27632, was observed to enhance LPS-induced NO production. We recently demonstrated that disrupting F-actin formation dramatically potentiates the ability of LPS to induce iNOS mRNA and protein expression. In the present study, staining of F-actin with nitrobenzoxadiazole (NBD)-phallacidin demonstrated that fluvastatin significantly impairs F-actin stress fiber formation. In light of these results, the ability of statins to increase NO production is due, at least in part, to their ability to block the biosynthesis of mevalonate, thereby preventing isoprenoid biosynthesis. This inhibits Rho/Rho-kinase signalling and, in turn, disrupts the actin cytoskeleton. Further analysis of the signalling pathway by which the actin cytoskeleton affects iNOS expression might yield new insight into mechanisms of regulation of NO production.  相似文献   

9.
Circulatory hypoxia‐related diseases (CHRDs), including acute coronary syndromes, stroke and organ transplantation, attract increased attention due to high morbidity and mortality. Mounting evidence shows that hypoxia‐induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of CHRD‐related vascular endothelial injury. Interestingly, hypoxia, even hypoxia‐induced oxidative stress, coagulation and inflammation can all induce release of endothelial microparticles (EMPs). EMPs, shed from activated or apoptotic endothelial cells (ECs), reflect the degree of EC damage, and elevated EMP levels are found in several CHRDs. Furthermore, EMPs, which play an important role in cell‐to‐cell communication and function, have confirmed pro‐coagulant, proinflammatory, angiogenic and other functions, affecting pathological processes. These findings suggest that EMPs and CHRDs have a very close relationship, and EMPs may help to identify CHRD phenotypes and stratify the severity of disease, to improve risk stratification for developing CHRDs, to better define prophylactic strategies and to ameliorate prognostic characterization of patients with CHRDs. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment and clinical prognosis of CHRDs.  相似文献   

10.
Rho family GTPases are key regulators of various physiological processes. Several recent studies indicated that the antagonistic relationship between Rho and Rac is essential for cell polarity and that the Rac activity is negatively regulated by Rho. In this study, we found that Rho-kinase, an effector of Rho, counteracted the Rac GEF STEF-induced Rac1 activation in COS7 cells. Rho-kinase phosphorylated STEF at Thr1662 in vitro, and Y-27632, a Rho-kinase inhibitor, suppressed lysophosphatidic acid-induced phosphorylation of STEF in PC12D cells. STEF interacted with specific molecules such as microtubule-associated protein 1B, and the phosphorylation of STEF by Rho-kinase diminished its interaction with these molecules. STEF promoted nerve growth factor-induced neurite outgrowth in PC12D cells, while the phosphomimic mutant of STEF had a weakened ability to enhance neurite outgrowth. Taken together, these results suggest that the phosphorylation of STEF by Rho-kinase exerts the inhibitory effect on the function of STEF.  相似文献   

11.
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy.  相似文献   

12.
We examined the effects of recombinant human C-reactive protein (rhCRP) on atherosclerosis-related factors in cultured human coronary artery endothelial and smooth muscle cells (HCAECs and HCASMCs). After removing endotoxin from commercial rhCRP preparations using the appropriate column, the purified (P)-rhCRP retained the ability to Ca(2+)-dependently bind to phosphorylcholine, but did not augment the secretion of interleukin-6 and MCP-1 from HCAECs, as non-purified (NP)-rhCRP did. By contrast, P-rhCRP elicited 2- to 3-fold increases in the secretion of both hormones from HCASMCs, though the effect was smaller than that obtained with NP-rhCRP. Production of PAI-1 and endothelin-1 was little affected by either rhCRP preparation in either cell type. In addition, P-rhCRP dose-dependently diminished adrenomedullin release from both cell types, but did not affect adrenomedullin receptor expression or function. Our findings highlight the importance of removing endotoxin from commercial rCRP preparations and show that hCRP elicits atherogenic responses from HCASMCs, but not HCAECs.  相似文献   

13.
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.  相似文献   

14.

Aims

Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols.

Methods

12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities.

Results

VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF.

Conclusion

Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.  相似文献   

15.
Regulated secretion of EC (endothelial cell) vWF (von Willebrand factor) is part of the haemostatic response. It occurs in response to secretagogues that raise intracellular calcium or cAMP. Statins are cholesterol-lowering drugs used for the treatment of cardiovascular disease. We studied the effect of fluvastatin on regulated secretion of vWF from HUVEC (human umbilical-vein ECs). Secretion in response to thrombin, a protease-activated receptor-1 agonist peptide, histamine, forskolin and adrenaline (epinephrine) was inhibited. This inhibition was reversed by mevalonate or geranylgeranyl pyrophosphate, and mimicked by a geranylgeranyl transferase inhibitor, demonstrating that the inhibitory mechanism includes inhibition of protein geranylgeranylation. To investigate this mechanism further, calcium handling and NO (nitric oxide) regulation were studied in fluvastatin-treated HUVEC. Intracellular calcium mobilization did not correlate with vWF secretion. Fluvastatin increased eNOS [endothelial NOS (NO synthase)] expression, but NOS inhibitors failed to reverse the effect of fluvastatin on vWF secretion. Exogenous NO did not inhibit thrombin-induced vWF secretion. Many small GTPases are geranylgeranylated and some are activated by secretagogues. We overexpressed DN (dominant negative) Rho GTPases, RhoA, Rac1 and Cdc42 (cell division cycle 42), in HUVEC. DNCdc42 conferred inhibition of thrombin- and forskolin-induced vWF secretion. We conclude that, via inhibition of protein geranylgeranylation, fluvastatin is a broadspectrum inhibitor of regulated vWF secretion. Geranylgeranylated small GTPases with functional roles in regulated secretion, such as Cdc42, are potential targets for the inhibitory activity of fluvastatin.  相似文献   

16.
Thymosin beta10 is a cytoplasm G-actin sequestering protein whose functions are largely unknown. To determine the direct effects of exogenous thymosin beta10 on angiogenic potentials as endothelial cell migration and capillary-like tube formation, human coronary artery endothelial cells (HCAECs) were incubated with increasing doses of thymosin beta10 (25-100 ng/ml). By using a modified Boyden chamber assay, thymosin beta10 inhibited cell migration in a dose- and time-dependent manner with the maximal effect being a 36% reduction at 100 ng/ml as compared to controls (P < 0.01). In addition, thymosin beta10 (100 ng/ml) significantly inhibited the capillary-like tube-formation of HCAECs on Matrigel, showing a 21% reduction of the total tube length as compared to negative controls (P < 0.01). Furthermore, by using real time PCR analysis, thymosin beta10 significantly decreased mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGFR-1) and integrin alphaV after 24 h treatment in HCAECs. By contrast, thymosin beta4 significantly increased HCAEC migration. These results indicate that thymosin beta10, but not thymosin beta4, have direct inhibitive effects on endothelial migration and tube formation that might be mediated via downregulation of VEGF, VEGFR-1 and integrin alphaV in HCAECs. This study suggests a potential therapeutic application of thymosin beta10 to the diseases with excessive angiogenesis such as cancer.  相似文献   

17.
Regular exercise resulting in release of catecholamines is an oxidant stress, and yet it protects humans from acute cardiac events. We designed this study to examine the effect of epinephrine on free radical release and endogenous superoxide dismutase (SOD) gene and protein expression in human coronary artery endothelial cells (HCAECs). HCAECs were incubated with epinephrine (10(-9) to 10(-5) M) alone or with the water-soluble analog of vitamin E (trolox) (10(-5) M), the lipid-soluble vitamin E (5 x 10(-5) M), or the beta(1)-adrenergic blocker atenolol (10(-5) M). At 1 and 24 h of incubation with epinephrine, superoxide anion generation increased by 102 and 81% in the HCAECs. There was a marked increase in both MnSOD and Cu/ZnSOD mRNA and protein, as determined by RT-PCR and Western Analysis, respectively. Both MnSOD and Cu/ZnSOD activities were also increased. Pretreatment of HCAECs with trolox and vitamin E decreased superoxide anion generation (p <.05 vs. epinephrine alone) and blocked the subsequent upregulation of SOD mRNA and protein. Treatment of cells with the beta-blocker atenolol also blocked the upregulation of SOD (p <.05 vs. epinephrine alone). These observations suggest that epinephrine via beta(1)-adrenoceptor activation causes superoxide anion generation, and the superoxide subsequently upregulates the endogenous antioxidant species SOD. These observations may be the basis of long-term benefits of exercise.  相似文献   

18.
Characterization of new multimeric erythropoietin receptor agonists   总被引:1,自引:0,他引:1  
Vadas O  Hartley O  Rose K 《Biopolymers》2008,90(4):496-502
In addition to its natural ligand, the receptor for erythropoietin can be activated by small peptides known as erythropoietin mimetic peptides (EMPs). Although EMPs are less potent than the natural ligand, EMP dimers, consisting of two EMPs joined via a linker, have been shown to exhibit significantly improved activity compared to the corresponding monomers, with potency approaching that of the native hormone. In this study, we used a panel of novel EMP dimers to explore the effects of linker length and EMP attachment site on potency. The EC50 values obtained in an EPO-dependent proliferation assay indicated that, as has been shown with similar molecules, EMP dimerization can lead to increases in potency of more than 2 orders of magnitude. We found that both C-terminal and N-terminal attachment of the linker to EMP was tolerated, and that, with the exception of the shortest linker, all of the linker lengths tested provided a similar increase in potency. In follow-up work devised to explore the potential benefit of contacting additional cell surface EPO receptors, we designed a tetrameric template consisting of lysine-based dimers joined via commercial PEG linkers of various molecular weights. Evaluation of the resulting molecules indicated a clear effect of PEG linker size on activity, while the "dimer of dimer" with the shortest linker exhibited 10-fold lower potency than the corresponding dimer, the longest tetramer increased potency by fivefold. We discuss the implications of these results for the further development of EMP multimers.  相似文献   

19.
By using magnetic bead microrheology we study the effect of inflammatory agents and toxins on the viscoelastic moduli of endothelial cell plasma membranes in real time. Viscoelastic response curves were acquired by applying short force pulses of ~500 pN to fibronectin-coated magnetic beads attached to the surface membrane of endothelial cells. Upon addition of thrombin, a rapid stiffening of the membrane was observed within 5 s, followed by recovery of the initial deformability within 2 min. By using specific inhibitors, two known pathways by which thrombin induces actin reorganization in endothelial cells, namely activation of Ca2+-calmodulin-dependent myosin light chain kinase and stimulation of Rho/Rho-kinase, were excluded as possible causes of the stiffening effect. Interestingly, the cytotoxic necrotizing factor of Escherichia coli, a toxin which, in addition to Rho, activates the GTPases Rac and CDC42Hs, also induced a dramatic stiffening effect, suggesting that the stiffening may be mediated through a Rac- or Cdc42Hs-dependent pathway. This work demonstrates that magnetic bead microrheometry is not only a powerful tool to determine the absolute viscoelastic moduli of the composite cell plasma membrane, but also a valuable tool to study in real time the effect of drugs or toxins on the viscoelastic parameters of the plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号