首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat denaturation profiles of rat thymus DNA, in intact cells, reveal the presence of two main DNA fractions differing in sensitivities to heat. The thermosensitive DNA fraction shows certain properties similar to those of free DNA: its stability to heat is decreased by alcohols and is increased in the presence of the divalent cations Ca2+, Mn2+, or Mg2+ at concentrations of 0.1-1.0 mM. Unlike free DNA, however, this fraction denatures over a wide range of temperature, and is heterogeneous, consisting of at least two subfractions with different melting points. The thermoresistant DNA fraction shows lowered stability to heat in the presence of Ca2+, Mn2+, or Mg2+ and increased stability in the presence of alcohols. It denatures within a relatively narrow range of temperature, consists of at least three subfractions, and, most likely, represents DNA masked by histones. The effect of Ca2+, Mn2+, or Mg2+ in lowering the melting point of the thermoresistant DNA fraction is seen at cation concentrations comparable to those required to maintain gross chromatin structure in cell nuclei or to support superhelical DNA conformation in isolated chromatin (0.5-1.0 mM). It is probable that factors involved in the maintenance of gross chromatin organization in situ and/or related to DNA superhelicity also have a role in modulating DNA-histone interactions, and that DNA-protein interactions as revealed by conventional methods using isolated chromatin may be different from those revealed when gross chromatin morphology remains intact.  相似文献   

2.
Thermal denaturation of calf thymus DNA was studied by scanning microcalorimetry. It has been shown that long dialysis of DNA against water causes a sharp decrease of DNA thermal stability due to biopolymer protonation. The literature data on the properties of DNA salt-free solutions obtained by dialysis are discussed.  相似文献   

3.
The degree of chromosomal DNA (cDNA) denaturation and renaturation on polytene chromosomes has been measured by UV microspectrophotometry. Also DNA losses occurring upon denaturation have been quantified by Feulgen, gallocyanin-chromalum and UV. It has been observed that denaturation in alkali (0.07 N NaOH at room temperature) and formamide (90% formamide; 0.1 SSC, pH 7.2) at 65 °C removes about 30% of the DNA. Low DNA loss occurs upon denaturation in HCl (0.24 M) at room temperature and 60% formamide: 2 × 10?4 M EDTA (pH 8) at 55 °C. The presence of 4% formaldehyde in the denaturation buffer prevents DNA loss. After denaturation of chromosomes in 0.1 × SSC containing 4% formaldehyde at 100 °C for 30 sec, an hyperchromicity of 39 °C is observed. The denaturation efficiency varies with the denaturation treatment. The percentage reassociation was measured from the difference in the UV absorption of renatured chromosomes and that of denatured chromosomes from the same set. It seems that in our conditions DNA:DNA reassociation does not occur. The efficiency of hybridization is proportional to the denaturation extent of the DNA. However, the entire fraction of DNA which has been denatured is not available for hybridization.  相似文献   

4.
5.
The solubility of calf thymus chromatin in sodium chloride   总被引:1,自引:1,他引:0       下载免费PDF全文
The solubility of calf thymus chromatin and chromatin depleted of F1-histone has been examined under various conditions in sodium chloride. F1-depleted DNH was more soluble than native DNH at low concentrations but this difference became small at high concentrations (1mg/ml). Both exhibited minimum solubility in 0.15M -NaCl. The effect of pH and of maleylation of the mino acid side chains on the solubility implied that electrostatic interactions dominated the precipitation reaction. Urea had no effect on the solubility of either complex. N.m.r. studies showed that the chromatin behaved as a rigid complex at all salt concentrations less than 0.6 molar.  相似文献   

6.
In 2.5 x 10(-4)M EDTA buffer, the derivative melting curve of calf thymus DNA shows a major band at 47 degrees with a shoulder at about 54 degrees . The fraction of melting area of this shoulder is about 13%. For reconstituted polylysine-calf thymus DNA complexes, in addition to the melting of free DNA regions at about 50 degrees (T(m)) there is another melting at about 106 degrees (T(m)) of polylysine-bound regions. The melting band of the complex at T(m) is not symmetrical. As more polylysine is bound to DNA the melting amplitude is diminished greatly on the major band at 47 degrees but only slightly on the shoulder at 54 degrees . The insensitivity of this shoulder appears to result from the existence of a 13% fraction of calf thymus DNA containing 55% GC. It is not favorably bound by polylysine. It remains in the supernatant after centrifugation and melts at about 54-56 degrees . This conclusion is further supported by two facts: the reconstitution method provides a condition for selective binding of polylysine to AT-rich DNA, and it yields a fully symmetric melting band at T(m) for complexes of polylysine with homogeneous bacterial DNA such as the one from M. luteus.  相似文献   

7.
Thermal denaturation was studied for a wide range of magnesium ions concentrations and salt concentration 0.15 M NaCl. It was shown that thermal stability of DNA increases at low Mg/2P ratios and decreases at high concentrations of magnesium ions. Up to Mg/2P = 10 DNA denaturation is an equilibrium process. With an increase in magnesium ions concentrations the enthalpy of DNA denaturation reaches the maximum at Mg/2P = 10 (50 kJ/mole base pairs). DNA aggregation and appearance of a new heat absorption peak is observed in the high temperature region at Mg/2P = 10. At this region of magnesium ions concentrations DNA denaturation process is non-equilibrium.  相似文献   

8.
9.
DNA thermal denaturation has been investigated in aqueous solutions of diethylsulfoxide (DESO) by means of UV-vis and densimetry methods. It is suggested that, on the one hand, the structural change of entire solutions and, on the other hand, a direct interaction of DESO with DNA are responsible for the observed peculiar behavior. The results obtained were compared with those of dimethylsulfoxide (DMSO), also known from literature.  相似文献   

10.
The dependence of animal DNA denaturation on magnesium ion concentration has been studied in the range (10(-6)--10(-1) M with sodium ion content of 10(-3) and 10(-2) M. Special attention has been given to the effect of multivalent metallic impurities bound to DNA. An increase of DNA thermal stability has been shown to occur in the magnesium concentration rage of 10(-6)--10(-4) M. At concentrations exceeding 10(-3) M the T M begins to decrease. The dependence of the DNA melting range on magnesium ion concentration has a maximum at approximately 10(-5) M Mg2+. At low magnesium and sodium ion concentrations a strong asymmetry of the melting curves has been observed. This effect can be described in terms of the melting theory for DNA complexed with small molecules and is explained by magnesium ion redistribution from the denatured portions of DNA to native ones. The method for calculation of melting curves in the DNA-ligand system has been proposed. Studies of thermal denaturation parameters have been shown to be an effective method for the estimation of binding constants of ligands to native and denatured DNA.  相似文献   

11.
12.
The lymphocyte nucleoids of mouse thymus contain about 40% of rapidly labelled nuclear RNA, about 9% of total intracellular protein and all nuclear DNA. Relaxation of superhelical DNA after thymocyte nucleoids treatment with pronase or RNAase suggests that non-histone proteins and/or RNAs are involved in conformational restrictions in the superhelical domains of cell DNAs. Thymocyte nucleoids proteins are represented by two groups of nonhistone proteins with molecular weights of 50 000-60 000 and 75 000-85 000. An essential role in the appearance of conformational restrictions in thymocyte superhelical DNA belongs to disulfide bonds.  相似文献   

13.
A cytological technique based on heat denaturation of in situ chromosomal DNA followed by differential reassociation and staining with acridine orange was developed. Mouse nuclei and chromosomes in fixed cytological preparations show a red-orange fluorescence after thermal DNA denaturation (2–4 minutes at 100° C), and fluoresce green if denaturation is followed by a total DNA reassociation (two minutes or more at 65–66°C). — A reassociation time between a few and 60–90 seconds demonstrates the centromeric heterochromatin of chromosomes (which sometimes aggregate in the form of clusters) and the interphase chromocenters in green, the chromosomal arms fluorescing red-orange. Under the same conditions, the Y chromosome presents a pale green or yellow-green fluorescence along its chromatids, but its centromeric region fluoresces weakly. — The interpretation is suggested that the fast-reassociating chromosomal DNA (as detected by AO in centromeric heterochromatin and interphase chromocenters), represents repetitive DNA.  相似文献   

14.
Using the thermal denaturation method the effect of bivalent copper of (4-10(-6)-10(-3)) M concentrations on the helix-coil transition of DNA was studied in the solution of Na+ concentrations 10(-3)-10(-1) M. Unlike the previous studies, this paper makes allowance for the effect of impurity ions present in DNA and deionized water. It has been shown that in the region of low Cu2+ and Na+ concentrations, thermal stability increases, the melting range extends and the denaturation curves become asymmetric. At concentrations more than approximately 3-10(-5) M Cu2+, melting temperature starts to fall, and the range reduces to 1-1.5 degrees at [Cu2+] greater than or equal to 2-10(-4) M. As [Cu2+] reaches these values, the denaturation curve asymmetry and melting range increase again, which is due to the inversion of the relative stability of AT- and GC-pairs. Employing experimental and phase-transition-theory data for homopolymers, the constants of Cu2+ binding with phosphates and DNA bases were calculated. The concentration dependence of the DNA denaturation parameters was shown to be governed by the superposition of binding Cu2+ with phosphates and nucleic acid bases.  相似文献   

15.
Electrostatic interactions govern structural and dynamical properties of membranes and can vary considerably with the composition of the aqueous buffer. We studied the influence of sodium chloride on a pure POPC lipid bilayer by fluorescence correlation spectroscopy experiments and molecular dynamics simulations. Increasing sodium chloride concentration was found to decrease the self-diffusion of POPC lipids within the bilayer. Self-diffusion coefficients calculated from the 100 ns simulations agree with those measured on a millisecond timescale, suggesting that most of the relaxation processes relevant for lipid diffusion are faster than the simulation timescale. As the dominant effect, the molecular dynamics simulations revealed a tight binding of sodium ions to the carbonyl oxygens of on average three lipids leading to larger complexes with reduced mobility. Additionally, the bilayer thickens by approximately 2 A, which increases the order parameter of the fatty acyl chains. Sodium binding alters the electrostatic potential, which is largely compensated by a changed polarization of the aqueous medium and a lipid dipole reorientation.  相似文献   

16.
The most radiosensitive thymus cortical lymphocytes are highly sensitive to inhibitors of repair of spontaneous DNA lesions known by endonucleases: this is indicative of different level of injury to cells. The preincubation of cells with chemical inductors of differentiation increases the number of spontaneous lesions in them. The preincubation of thymocytes with concanavalin A removes almost completely the differences in the level of injury.  相似文献   

17.
Heat denaturation of DNA in situ, in unbroken cells, was studied in relation to the cell cycle. DNA in metaphase cells denatured at lower temperatures (8 degrees-10 degrees C lower) than DNA in interphase cells. Among interphase cells, small differences between G1, S, and G2 cells were observed at temperatures above 90 degrees C. The difference between metaphase and interphase cells increased after short pretreatment with formaldehyde, decreased when cells were heated in the presence of 1 mM MgCl2, and was abolished by cell pretreatment with 0.5 N HCl. The results suggest that acid-soluble constituents of chromatin confer local stability to DNA and that the degree of stabilization is lower in metaphase chromosomes than in interphase nuclei. These in situ results remain in contrast to the published data showing no difference in DNA denaturation in chromatin isolated from interphase and metaphase cells. It is likely that factors exist which influence the stability of DNA in situ are associated with the super-structural organization of chromatin in intact nuclei and which are lost during chromatin isolation and solubilization. Since DNA denaturation is assayed after cell cooling, there is also a possibility that the extent of denatured DNA may be influenced by some factors that control strand separation and DNA reassociation. The different stainability of interphase vs. metaphase cells, based on the difference in stability of DNA, offers a method for determining mitotic indices by flow cytofluorometry, and a possible new parameter for sorting cells in metaphase.  相似文献   

18.
In recent years, industrial fermentation researchers have shifted their attention from liquid to solid and semisolid culture conditions. We converted liquid cultures to the semisolid mode by adding high levels of gelatin. Previous studies on liquid cultures have revealed the inhibitory activity of mineral salts, such as NaCl, on the fermentation of sugars by yeasts. We made a kinetic study of the effects of 1 to 5% (wt/vol) NaCl on the alcoholic fermentations of glucose by Saccharomyces cerevisiae in a growth medium containing 16% gelatin. Our results showed that the effect of high salt content on semisolid culture is essentially the same as the effect on liquid culture; i.e., as the salt content increased, the following occurred: (i) the growth of yeasts decreased, (ii) the lag period of the yeast biomass curve lengthened, (iii) the sugar intake was lowered, (iv) the yield of ethanol was reduced, and (v) the production of glycerol was increased. We observed a new relationship correlating the area of kinetic hysteresis with ethanol production rate, acetaldehyde concentration, and the initial NaCl concentration.  相似文献   

19.
20.
Summary Under the conditions of these experiments sodium chloride in the rooting medium does not have the same effect on the growth ofLolium perenne as does water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号