首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of unilateral and bilateral partial and total ablation of the auditory cortex on compensation of Doppler frequency shifts in echosignals was studied in greater horseshoe bats moving in space. The ability of the bats to compensate Doppler surges in the echolocation signal was found to be worsened even after partial ablation of the auditory cortex. Total bilateral ablation led to more marked and irreversible changes in the functioning of the Doppler echolocation system. In this case the degree of compensation in the decorticated animals was only 33% of normal; the return of the frequency of the constant part of the signal to the resting level after movement of the animal ceased was delayed. After total ablation of the auditory cortical projection area definite retrograde degeneration of cells of the medial geniculate body was observed. It is concluded from the results that the auditory cortex in bats plays a direct part in echolocation spatial analysis.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 43–50, January–February, 1982.  相似文献   

2.
Changes in the responsiveness of the auditory cortex to an acoustic click and to direct stimulation of the medial geniculate body were studied by the method of evoked potentials in an extended experiment on cats with implanted electrodes. It is shown that the minimum interval between two stimuli for which a second click produces an EP in the auditory cortex is from 30 to 50 msec. The relative refractory period consists of two parts. The first (50–100 msec) is characterized by a rapid recovery, and the second (about 500 msec) by a slow recovery. In contrast with a click, direct stimulation of the geniculate body does not produce a refractory condition but one of facilitation. The effects of Nembutal and chloralose anesthesia and the state of alertness on the recovery of auditory cortex responsiveness were investigated. The reason for the absence and the reduction of an EP from the auditory cortex to a testing click during absolute and relative refractory periods is not a passive decrease of excitability of the usual refractory kind, but an active interplay of excitatory and inhibitory processes in the cerebral cortex, geniculate bodies, and reticular formation of the brain stem.A. A. Bogomolets' Institute of Physiology, Academy of Sciences, Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 54–64, July–August, 1969.  相似文献   

3.
Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.  相似文献   

4.
We examined the auditory response properties of neurons in the medial geniculate body of unanesthetized little brown bats (Myotis lucifugus). The units' selectivities to stimulus frequency, amplitude and duration were not significantly different from those of neurons in the inferior colliculus (Condon et al. 1994), which provides the primary excitatory input to the medial geniculate body, or in the auditory cortex (Condon et al. 1997) which receives primary input from the medial geniculate body. However, in response to trains of unmodulated tone pulses, the upper cutoff frequency for time-locked discharges (64 ± 46.9 pulses per second or pps) and the mean number of spikes per pulse (19.2 ± 12.2 pps), were intermediate to those for the inferior colliculus and auditory cortex. Further, in response to amplitude-modulated pulse trains, medial geniculate body units displayed a degree of response facilitation that was intermediate to that of the inferior colliculus and auditory cortex inferior colliculus: 1.32 ± 0.33; medial geniculate body: 1.75 ± 0.26; auditory cortex: 2.52 ± 0.96, P < 0.01). These data suggest that the representation of isolated tone pulses is not significantly altered along the colliculo-thalamo-cortical axis, but that the fidelity of representation of temporally patterned signals progressively degrades along this axis. The degradation in response fidelity allows the system to better extract the salient feature in complex amplitude-modulated signals. Accepted: 9 January 1999  相似文献   

5.
Calculation of numerical density of neurons in ventral part of cat's medial geniculate body (vMGB) was made. It was shown that 1 mm3 of vMGB tissue contains 29,460 neurons. After 6 months from unilateral removal of the auditory cortex the quantity of large (supposedly thalamocortical) neurons in ipsilateral vMGB reduced on average by 78.1%, but of small ones--only by 10.7%.  相似文献   

6.
The effect of unilateral and bilateral destruction of the inferior colliculus on the sensitivity of the auditory system, on parameters of the sonor signals, and on Doppler shift compensation in echo signals was studied in experiments on horseshoe bats (Rhinolophus ferrum-equinum). The results show that complete bilateral destruction of the inferior colliculus in bats does not lead to total disturbance of function of the auditory system but it sharply reduces the sensitivity of that system, as shown by a decrease in the maximal obstacle detection range and inability to respond to an insect emitting a feeble sound. It can also be concluded that the inferior colliculus plays a direct part in maintenance of the emission frequency and that different parts of the inferior colliculus play different roles in this process. The Doppler shift compensation effect requires preservation of the integrity of not less than half of the central nucleus of at least one inferior colliculus.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 375–381, July–August, 1980.  相似文献   

7.
The ultrastructural features of the primary auditory cortex of the cats and the character of the endings of geniculo-cortical afferent fibers in the early stages of experimental degeneration evoked by destruction of the medial geniculate body were studied. In all layers of the cortex asymmetrical synapses with round synaptic vesicles on dendritic spines and on thin dendritic branches of pyramidal and nonpyramidal neurons are predominant. Symmetrical synapses with flattened or polymorphic vesicles are distributed chiefly on the bodies of the neurons and their large dendrites. Because there are few symmetrical synapses which could be regarded as inhibitory it is postulated that inhibitory influences may also be transmitted through asymmetrical synapses with round vesicles. Other types of contacts between the bodies of neurons, dendrites, and glial processes also were found in the auditory cortex. Degenerating terminals of geniculo-cortical fibers were shown to terminate chiefly in layer IV of the cortex on pyramidal and nonpyramidal neurons. Degeneration was of the dark type in asymmetrical synapses with round vesicles. The results are dicussed in connection with electrophysiological investigations of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 519–524, September–October, 1973.  相似文献   

8.
The effects of ageing on the turnover of dopamine, noradrenaline and serotonin in the lateral geniculate nucleus and the visual cortex were evaluated, using high performance liquid chromatography (HPLC) with electrochemical detection. Compared to adult animals, aged rats showed more changes in the visual cortex than in the lateral geniculate nucleus, with dopamine turnover decreased in both structures and noradrenaline turnover unaltered. Changes in serotonin turnover were witnessed only in the visual cortex. A decrease in the monoamine oxidase-A to -B ratio was also observed with increased age for both the lateral geniculate nucleus and visual cortex.  相似文献   

9.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

10.
Acute experiments on cats showed that unilateral division of projection connections from the cerebral cortex gives rise to definite changes in the effects of extracellular polarization of lateral geniculate neurons: in 40% of cells the regular firing pattern is disturbed in the initial period of action of anodal polarization, the number of cells with after-responses and prolonged changes in spontaneous firing pattern is significantly reduced, and the number of neurons capable of modifying their type of activity under the influence of an incoming polarizing current is also reduced. After interruption of the descending cortical connections the functional characteristics of the lateral geniculate neurons are altered, with a resulting narrowing of the range of their physiological responses to the polarizing current. These facts suggest that the most complex processes of tonic regulation of unit activity in the lateral geniculate bodies require the active participation of the cerebral cortex.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 629–635, November-December, 1972.  相似文献   

11.
Studies have been made on the connections of rostral neocortex in bats in order to reveal connections with the structures of the auditory sensory system the existence of which is indicated by evident specific responses to ultrasound in the form of synchronization reaction. It was shown that dorsolateral parts of the rostral neocortex receive topically organized projections from the thalamic nuclei VPL and VL. Connections with the auditory cortex and suprageniculate nucleus are not evident. Afferents of the medial wall of the rostral cortex originate from the thalamic nuclei MD and AM. Possible pathways of auditory afferentation to the dorso-lateral part of rostral neocortex are discussed.  相似文献   

12.
Whole-body exposure of guinea pigs to microwaves of 60 mW/cm2 for 10 min causes quantitative changes in glial population of outer geniculate bodies and visual cortex that are manifested by the enlarged perineuronal glia, an increased glioneuronal index, and a relatively stable perivascular glia. The dynamics of the changes observed indicates higher reactivity and repair capacity of the glioneuronal complex of outer geniculate bodies.  相似文献   

13.
Responses of 117 single- or multi-units in the auditory cortex (AC) of bats (Myotis lucifugus) to tone bursts of different stimulus durations (1– 400 ms) were studied over a wide range of stimulus intensities to determine how stimulus duration is represented in the AC. 36% of AC neurons responded more strongly to short stimulus durations showing short-pass duration response functions, 31% responded equally to all pulse durations (i.e., all-pass), 18% responded preferentially to stimuli having longer durations (i.e., long-pass), and 15% responded to a narrow range of stimulus durations (i.e., band-pass). Neurons showing long-pass and short-pass duration response functions were narrowly distributed within two horizontal slabs of the cortex, over the rostrocaudal extent of the AC. The effects of stimulus level on duration selectivity were evaluated for 17 AC neurons. For 65% of these units, an increase in stimulus intensity resulted in a progressive decrease in the best duration. In light of the unusual intensity-dependent duration responses of AC neurons, we hypothesized that the response selectivities of AC neurons is different from that in the brainstem. This hypothesis was validated by results of study of the duration response characteristics of single neurons in the inferior colliculus. Accepted: 8 November 1996  相似文献   

14.
Previous studies have demonstrated that despite its blindness, the subterranean blind mole rat (Spalax ehrenbergi) possesses a noticeable lateral geniculate nucleus and a typical cyto-architectural occipital cortex that are reciprocally connected. These two areas, as revealed by the metabolic tracer 2-deoxyglucose, are activated by auditory stimuli. Using single unit recordings, we show that about 57% of 325 cells located within the occipital cortex of anesthetized mole rats responded to at least one of the following auditory stimuli — white noise, pure tones, clicks, and amplitude modulated tones — with the latter two being the most effective. About 85% of cells driven by either contralateral or ipsilateral stimulation also responded to binaural stimulation; about 13% responded only to binaural stimulation; and 2% were driven exclusively by contralateral stimulation. Comparing responsiveness and response strength to these three modes of stimulation revealed a contralateral predominance. Mean latency (±SD) of ipsilateral and contralateral responses were 48.5±32.6 ms and 33.5±9.4 ms, respectively. Characteristic frequencies could be divided into two distinct subgroups ranging between 80 and 125 Hz and between 2,500 and 4,400 Hz, corresponding to the most intensive spectral components of the vibratory intraspecific communication signals and airborne vocalizations.Abbreviations BMF best modulation frequency - CF characteristic frequency - 2-DG 2-deoxyglucose - dLGN dorsal lateral geniculate nucleus - IC inferior colliculus - LGN lateral geniculate nucleus - OC occipital cortex - MTF modulation transfer function - SAM sinusoidally amplitude modulation - SC superior colliculus  相似文献   

15.
The location and morphological profile of auditory cortex neurons projecting to the medial geniculate body were investigated in adult cats using horseradish peroxidase retrograde axonal transport techniques. Sources of descending projections to the medial geniculate body from auditory cortex areas I and II were found to be neurons belonging to deep-lying layers (layer VI and layer V to a lesser extent). By far the majority of corticogeniculate neurons in the auditory cortex were pyramidal cells. In layer VI of the primary auditory area (A1), the number of corticogeniculate neurons reaches 60% of all cells belonging to that layer. The average area (M±m) of the profile of perikarya of corticogeniculate neurons in layer VI, area Al equaled 139.3±2.5 µm2 and 219.5±7.0 µm2 in layer V neurons; average size of long diameter: 15.0±0.19 and 18.3±0.4 µm respectively. The lower regions of layers III and IV in area Al were found to be the termination point of the greater mass of anterogradely-labeled geniculocortical fibers (terminals of relay neuron axons belonging to the medial geniculate body).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, July–August, pp. 513–521, 1989.  相似文献   

16.
Using axonal transport of horseradish peroxidase and electrophysiological mapping technique, studies have been made on structural and functional organization of the auditory cortex in rats. After the injection of HRP to peripheral parts of the auditory cortex, mainly initial neurones were found in the dorsal and median parts of the geniculate body. Electrophysiological experiments revealed the localization of neurones with widespread frequency-threshold curves and high thresholds at characteristic frequency. On the basis of the data obtained, it is suggested that similar to other mammals, rats have the areas of secondary fields of the auditory cortex which surround central coniocortex.  相似文献   

17.
As it has been demonstrated microscopically, the corticofugal fibers in the AII and Ep zones of the auditory cortex in all the auditory subcortical centers (medial geniculate body, posterior colliculi of the tectum mesencephali and the superior olive nuclei) terminate by means of single axodendritic synapses, having an asymmetrically active zone, and mixed (by their form) synaptic vesicles. Small and middle dendrites make their postsynaptic part. A comparison has been carried out on distribution and form of synapses, completing the projection fibers from the zone of the primary acoustic responses (AI) and of the primary acoustic zone (AIV). Basing on the morphological data, concerning distribution and form of the synaptic terminals, a suggestion is made that physiological influence of each acoustic cortex zone is different for the medial geniculate body and posterior colliculi of the tectum mesencephali, but it is unitypical for the superior olive level.  相似文献   

18.
Abstract: [3H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected.  相似文献   

19.
The role of the auditory cortex and inferior colliculus in echolocation detection and tracking of a moving target and also the role of these parts of the brain in regulation of the vocal apparatus were studied by behavioral and bioacoustic methods in the greater horseshoe batRhinolophus ferrum-equinium. Total bilateral blocking of the auditory cortex was shown to cause significant and irreversible changes in tracking a moving target. Meanwhile destruction of the auditory cortex had no appreciable effect on activity of the bat's vocal apparatus. Total bilateral destruction of the inferior colliculi in the greater horseshoe bat led to disappearance of the response to a moving target (either an artificial target or a natural prey — an insect). In animals with destruction of the inferior colliculi drastic changes were observed in the spectra of the location signals: Numerous low-frequency and high-frequency spectral components appeared. It is concluded from the results that the inferior colliculi in the midbrain participate directly in echolocation detection of moving targets and also in coordination of the reception-emission system of the echolocator in bats. Participation of the auditory cortex in echolocation detection of moving targets is manifested as optimization of the working of the echolocation system.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 737–745, November–December, 1984.  相似文献   

20.
The cetacean brain specifics involve an exceptional development of the auditory neural centres. The place of projection sensory areas including the auditory that in the cetacean brain cortex is essentially different from that in other mammals. The EP characteristics indicated presence of several functional divisions in the auditory cortex. Physiological studies of the cetacean auditory centres were mainly performed using the EP technique. Of several types of the EPs, the short-latency auditory EP was most thoroughly studied. In cetacean, it is characterised by exceptionally high temporal resolution with the integration time about 0.3 ms which corresponds to the cut-off frequency 1700 Hz. This much exceeds the temporal resolution of the hearing in terranstrial mammals. The frequency selectivity of hearing in cetacean was measured using a number of variants of the masking technique. The hearing frequency selectivity acuity in cetacean exceeds that of most terraneous mammals (excepting the bats). This acute frequency selectivity provides the differentiation among the finest spectral patterns of auditory signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号