首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We aimed to detect Mycoplasma hyopneumoniae from the air of selected farms through air filtration-based air sampling using polymerase chain reaction (PCR). Air samples were collected at different locations inside and outside of pig farm rooms on polyethersulfone membrane (0.22 μm), and the presence of M. hyopneumoniae DNA was analyzed by PCR. Furthermore, nasal swab and blood samples were collected from 336 pigs in the same air sampled rooms and were analyzed by PCR and IDEXX ELISA, respectively. The suitability of the air sampling method was validated with analysis of an artificially induced aerosolized avirulent M. hyopneumoniae in an enclosed box showing PCR-positive results. M. hyopneumoniae was detected from air sample of pig farm rooms using PCR. Although the probability of an airborne M. hyopneumoniae causing an infection is not yet confirmed, air sampling PCR results could serve as a tool to assess the spread of M. hyopneumoniae by bioaerosols and the infection dynamics in a herd and between herds.  相似文献   

2.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

3.
Loop-mediated isothermal amplification (LAMP), a novel method of gene amplification, was employed in this study for detecting Mycoplasma hyopneumoniae in the respiratory tract or lungs of swine. The pathogen can be detected in LAMP reactions containing as few as 10 fg purified target DNA (10 copies of M. hyopneumoniae genome) within 30 min, which was comparable to real-time PCR. After 30-min reaction at 63 °C, the addition of a certain amount of dye (SYBR Green I and hydroxyl naphthol blue at a proper ratio) into the LAMP reaction system makes the results easily determined as positive or negative by visual inspection. In addition, the LAMP was able to distinguish between M. hyopneumoniae and other closely-related mycoplasma strains, indicating a high degree of specificity. The LAMP assay was more simple and cheap, since the reaction could be completed under isothermal conditions and less laboratorial infrastructure are required. And, it was proven reliable for M. hyopneumoniae diagnosis of nasal swab and lung samples from the field.  相似文献   

4.
Anthracnose caused by Colletotrichum gloeosporioides is an economically important disease which affects greater yam (Dioscorea alata L.) worldwide. Apart from airborne conidia, the pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of C. gloeosporioides in soil and planting material. In conventional (single-round) PCR, the limit of detection was 20?pg, whereas in nested PCR the detection limit increased to 0.2?pg of DNA. The primers designed were found to be highly specific and could be used for accurate identification of the pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples.  相似文献   

5.
The purpose of this study was to compare the performance of a molecular detection technique (nested PCR) with that of mycobacterial culture in the detection of Mycobacterium bovis DNA in a set of 687 samples of experimentally inoculated environmental substrates (hay, soil, corn, water) exposed to natural weather conditions in Michigan. Four replicates of each substrate were used; half were autoclaved for sterilization, all were inoculated with 50,000 CFU of M. bovis isolated from Michigan livestock, and all were placed in outdoor enclosures, with half under shade and the other half exposed to direct sunlight. Samples were tested for the presence of M. bovis during one 12-month period, with monthly sample testing and during three 12-week periods (winter, spring, summer) with weekly sample testing. Samples were subjected to mycobacterial culture for isolation of M. bovis and a nested PCR with two primer sets targeting IS6110 to detect M. bovis DNA. In 128 samples tested during the 12-month period, M. bovis was not detectable by culture after 2 months but M. bovis DNA was detectable by PCR for at least 7 months. Of the 559 samples tested during the 12-week periods, PCR detected M. bovis DNA for up to 88 days in all of the sample types. There were no significant differences in the detection of M. bovis between shade and sun samples or between sterile and unsterilized samples, regardless of the detection method (PCR or culture). For use in epidemiologic investigations, the PCR assay was more rapid than mycobacterial culture, was not hindered by contaminating organisms, and detected M. bovis DNA in environment samples much longer after initial contamination than mycobacterial culture did.  相似文献   

6.
Colonization of the gastrointestinal (GI) tract is initiated during birth and continually seeded from the individual’s environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated), while another group (control) was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07), and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively). The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as have a beneficial effect on systemic immune responses as demonstrated with M. hyopneumoniae infection.  相似文献   

7.
Single-particle laser desorption/ionization time-of-flight mass spectrometry, in the form of bioaerosol mass spectrometry (BAMS), was evaluated as a rapid detector for individual airborne, micron-sized, Mycobacterium tuberculosis H37Ra particles, comprised of a single cell or a small number of clumped cells. The BAMS mass spectral signatures for aerosolized M. tuberculosis H37Ra particles were found to be distinct from M. smegmatis, Bacillus atrophaeus, and B. cereus particles, using a distinct biomarker. This is the first time a potentially unique biomarker was measured in M. tuberculosis H37Ra on a single-cell level. In addition, M. tuberculosis H37Ra and M. smegmatis were aerosolized into a bioaerosol chamber and were sampled and analyzed using BAMS, an aerodynamic particle sizer, a viable Anderson six-stage sampler, and filter cassette samplers that permitted direct counts of cells. In a background-free environment, BAMS was able to sample and detect M. tuberculosis H37Ra at airborne concentrations of >1 M. tuberculosis H37Ra-containing particles/liter of air in 20 min as determined by direct counts of filter cassette-sampled particles, and concentrations of >40 M. tuberculosis H37Ra CFU/liter of air in 1 min as determined by using viable Andersen six-stage samplers. This is a first step toward the development of a rapid, stand-alone airborne M. tuberculosis particle detector for the direct detection of M. tuberculosis bioaerosols generated by an infectious patient. Additional instrumental development is currently under way to make BAMS useful in realistic environmental and respiratory particle backgrounds expected in tuberculosis diagnostic scenarios.  相似文献   

8.
Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management.  相似文献   

9.
Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (KD 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (KD 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.  相似文献   

10.
Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod)-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.  相似文献   

11.
Aims: A triplex real‐time PCR assay to quantify Mycoplasma hyopneumoniae in specimens from live and dead pigs was developed and validated. The minimal dose of Myc. hyopneumoniae required to induce pneumonia in specific pathogen‐free pigs was determined. Methods and Results: This TaqMan test simultaneously detected three genes encoding the proteins P46, P97 and P102. All Myc. hyopneumoniae strains analysed were detected, including strains isolated in three countries (France, England and Switzerland) and from several pig farms (n = 33), and the test was specific. The estimated detection thresholds were 1·3 genome equivalents (μl?1) for the targets defined in p97 and p102 genes and 13 genome equivalents (μl?1) for the segment defined in the p46 gene. This test was used to quantify Myc. hyopneumoniae in specimens sampled from experimentally infected pigs. In live pigs, c. 107, 108 and 1010 genome equivalents (ml?1) of Myc. hyopneumoniae were detected in the nasal cavities, tonsils and trachea samples, respectively. In dead pigs, 108–1010 genome equivalents (ml?1) of Myc. hyopneumoniae were detected in the lung tissue with pneumonia. The estimated minimal dose of Myc. hyopneumoniae required to induce pneumonia was 105 colour‐changing units (CCU) per pig (corresponding to 108 mycoplasmas). Conclusion: The triplex RT‐PCR test was validated and can be used for testing samples taken on the pig farms. Significance and Impact of the Study: This test should be a very useful tool in pig herds to control enzootic pneumonia or healthy carrier pigs and to study the dynamics of Myc. hyopneumoniae infections.  相似文献   

12.
A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity.  相似文献   

13.
Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples.  相似文献   

14.
Aims:  Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies.
Method:  A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples.
Conclusions:  The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not.
Significance and Impact of the Study:  The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.  相似文献   

15.
Ascarid Larva Migrans Syndrome (ascarid LMS) is a clinical syndrome in humans, caused by the migration of animal roundworm larvae such as Toxocara canis, Toxocara cati and Ascaris suum. Humans may acquire infection by ingesting embryonated eggs, or infective larvae of these parasites in contaminated meat and organ meats. To detect these pathogenic contaminations, a novel nested multiplex PCR system was developed. Our novel nested multiplex PCR assay showed specific amplification of T. canis, T. cati and Ascaris spp. Detection limit of the nested multiplex PCR was tested with serial dilution of T. canis, T. cati or A. suum genomic DNA (gDNA) from 100?pg to 100 ag and found to be 10?fg, 1?fg and 100?fg, respectively. When larvae were spiked into chicken liver tissue, DNA of T. canis and A. suum was detected from the liver spiked with a single larva, while the assay required at least 2 larvae of T. cati. Moreover, the ascarid DNA was detected from the liver of mice infected with 100 and 300 eggs of T. canis, T. cati or A. suum. This nested multiplex PCR assay could be useful for the detection of contamination with ascarid larvae in meat and organ meats.  相似文献   

16.

Background

Mycoplasma pneumoniae and Chlamydophila pneumoniae are major causes of lower and upper respiratory infections that are difficult to diagnose using conventional methods such as culture. The ProPneumo-1 (Prodesse, Waukesha, WI) assay is a commercial multiplex real-time PCR assay for the simultaneous detection of M. pneumoniae and/or C. pneumoniae DNA in clinical respiratory samples.

Objective

The aim of this study was to evaluate the sensitivity and specificity of the ProPneumo-1, a newly developed commercial multiplex real-time PCR assay.

Methods

A total of 146 clinical respiratory specimens, collected from 1997 to 2007, suspected of C. pneumoniae or M. pneumoniae infections were tested retrospectively. Nucleic acid was extracted using an automated NucliSense easyMag (bioMerieux, Netherlands). We used a "Home-brew" monoplex real-time assay as the reference method for the analysis of C. pneumoniae and culture as the reference method for the analysis of M. pneumoniae. For discordant analysis specimens were re-tested using another commercial multiplex PCR, the PneumoBacter-1 assay (Seegene, Korea).

Results

Following discordant analysis, the sensitivity of the ProPneumo-1 assay for pathogens, C. pneumoniae or M. pneumoniae, was 100%. The specificity of the ProPneumo-1 assay, however, was 100% for C. pneumoniae and 98% for M. pneumoniae. The limits of detection were 1 genome equivalent (Geq) per reaction for pathogens, M. pneumoniae and C. pneumoniae. Due to the multipex format of the ProPneumo-1 assay, we identified 5 additional positive specimens, 2 C. pneumoniae in the M. pneumoniae-negative pool and 3 M. pneumoniae in the C. pneumoniae-negative pool.

Conclusion

The ProPneumo-1 assay is a rapid, sensitive and effective method for the simultaneous detection of M. pneumoniae and C. pneumoniae directly in respiratory specimens.  相似文献   

17.
Hematophagous activity of Mecistocirrus digitatus, which causes substantial blood and weight loss in large ruminants, is an emerging challenge due to the economic loss it brings to the livestock industry. Infected animals are treated with anthelmintic drugs, based on the identification of helminth species and the severity of infection; however, traditional methods such as microscopic identification and the counting of eggs for diagnosis and determination of level of infection are laborious, cumbersome and unreliable. To facilitate the detection of this parasite, a SYBR green-based real-time PCR was standardized and validated for the detection of M. digitatus infection in cattle and buffaloes. Oligonucleotides were designed to amplify partial Internal Transcribed Spacer (ITS)-1 sequence of M. digitatus. The specificity of the primers was confirmed by non-amplification of DNA extracted from other commonly occurring gastrointestinal nematodes in ruminants. Plasmids were ligated with partial ITS-1 sequence of M. digitatus, serially diluted (hundred fold) and used as standards in the real-time PCR assay. The quantification cycle (Cq) values were plotted against the standard DNA concentration to produce a standard curve. The assay was sensitive enough to detect one plasmid containing the M. digitatus DNA. Clinical application of this assay was validated by testing the DNA extracted from the faeces of naturally infected cattle (n = 40) and buffaloes (n = 25). The results were compared with our standard curve to calculate the quantity of M. digitatus in each faecal sample. The Cq value of the assay depicted a strong linear relationship with faecal DNA content, with a regression coefficient of 0.984 and efficiency of 99%. This assay has noteworthy advantages over the conventional methods of diagnosis because it is more specific, sensitive and reliable.  相似文献   

18.
Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.  相似文献   

19.
Detection of mycoplasma contaminations by the polymerase chain reaction   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) has been used for the general detection ofMollicutes. 25Mycoplasma andAcholeplasma species were detected including important contaminants of cell cultures such asM. orale, M. arginini, M. hyorhinis, M. fermentans, A. laidlawii and additional human and animal mycoplasmas. PCR reactions were performed using a set of nested primers defined from conserved regions of the 16S rRNA gene. The detection limit was determined to be 1 fg mycoplasma DNA, which is equivalent to 1–2 genome copies of the 16S rRNA coding region. The identity of the amplification products was confirmed by agarose gel electrophoresis and restriction enzyme analysis. DNA from closely and distantly related micro-organisms did not give rise to specific amplification products. The method presented here offers a much more sensitive, specific and rapid assay for the detection of mycoplasmas than the existing ones.  相似文献   

20.
Mycobacterium ulcerans is a slow-growing environmental bacterium that causes a severe skin disease known as Buruli ulcer. PCR has become a reliable and rapid method for the diagnosis of M. ulcerans infection in humans and has been used for the detection of M. ulcerans in the environment. This paper describes the development of a TaqMan assay targeting IS2404 multiplexed with an internal positive control to monitor inhibition with a detection limit of less than 1 genome equivalent of DNA. The assay improves the turnaround time for diagnosis and replaces conventional gel-based PCR as the routine method for laboratory confirmation of M. ulcerans infection in Victoria, Australia. Following analysis of 415 clinical specimens, the new test demonstrated 100% sensitivity and specificity compared with culture. Another multiplex TaqMan assay targeting IS2606 and the ketoreductase-B domain of the M. ulcerans mycolactone polyketide synthase genes was designed to augment the specificity of the IS2404 PCR for the analysis of a variety of environmental samples. Assaying for these three targets enabled the detection of M. ulcerans DNA in soil, sediment, and mosquito extracts collected from an area of endemicity for Buruli ulcer in Victoria with a high degree of confidence. Final confirmation was obtained by the detection and sequencing of variable-number tandem repeat (VNTR) locus 9, which matched the VNTR locus 9 sequence obtained from the clinical isolates in this region. This suite of new methods is enabling rapid progress in the understanding of the ecology of this important human pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号