首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area of the hair follicle, express the stem-cell marker, nestin, and have been shown to differentiate to nerve cells, glial cells, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes. Transplanted HAP stem cells promote the recovery of peripheral nerve and spinal cord injuries and have the potential for heart regeneration as well. In the present study, we implanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell spheres encapsulated in polyvinylidene fluoride (PVDF)-membrane cylinders into the severed sciatic nerve of immunocompetent and immunocompromised (nude) mice. Eight weeks after implantation, immunofluorescence staining showed that the HAP stem cells differentiated into neurons and glial cells. Fluorescence microscopy showed that the HAP stem cell hair spheres promoted rejoining of the sciatic nerve of both immunocompetent and immunodeficient mice. Hematoxylin and eosin (H&E) staining showed that the severed scatic nerves had regenerated. Quantitative walking analysis showed that the transplanted mice recovered the ability to walk normally. HAP stem cells are readily accessible from everyone, do not form tumors, and can be cryopreserved without loss of differentiation potential. These results suggest that HAP stem cells may have greater potential than iPS or ES cells for regenerative medicine.  相似文献   

2.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

3.
The synthesis of a 37-kilodalton (kDa) protein which has been shown recently to be identical with apolipoprotein E (apo-E) was increased after sciatic nerve injury of the rat. When regeneration of the nerve was allowed, its synthesis returned to control levels at about 8 weeks post injury. In this report it is shown that similar time-course studies of the protein in the rat optic nerve revealed a delayed increase of the protein but a comparably high level of synthesis at 3 weeks post injury. This level was maintained up to at least 18 weeks after crush. Furthermore, two-dimensional electrophoresis revealed that the characteristic "trailing" of the protein is due to its sialylation, because it was reduced after neuraminidase treatment. This treatment, however, detected a neuraminidase-resistant heterogeneous form in CNS tissue and a homogeneous form in peripheral nervous tissue. The trailing persisted up to 18 days of culture of optic nerve explants, of CNS glial cells, and of peritoneal macrophages, but disappeared during the first culture days of sciatic nerve explants and was not observed in Schwann cell culture media. Incorporation studies with 35SO4 revealed that apo-E was the major sulfated protein in culture media conditioned by CNS glial cells, whereas sulfation of the protein was undetectable in Schwann cell cultures. Because macrophages are likely to be the major source of apo-E in both peripheral and central glial cell cultures as well as in injured optic and sciatic nerves, it is hypothesized that resident cells of sciatic nerves secrete potent sulfatases. As a result, sialic acid residues may be more susceptible to degradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

5.
Current research into regeneration of the nervous system has focused on defining the molecular events that occur during regeneration. One well-characterized system for studying nerve regeneration is the sciatic nerve of rat. Numerous studies have characterized the sequence of events that occur after a crush injury to the sciatic nerve (Cajal 1928; Hall 1989). These events include axon and myelin breakdown, changes in the permeability of the blood vessels, proliferation of Schwann cells, invasion of macrophages, and the phagocytosis of myelin fragments by Schwann cells and macrophages. The distal segment of the injured sciatic nerve provides a supportive environment for the regeneration of the nerve fibres (Cajal 1928; David & Aguayo 1981). Within a period of weeks, the injured sciatic nerve is able to regrow and successfully reinnervate the appropriate targets. Some of the molecules that provide trophic support for the regrowing nerve fibres have been identified, including nerve growth factor (NGF) (Heumann et al. 1987) and glial maturation factor beta (Bosch et al. 1989). Another class of molecules show changes in their rates of synthesis during regeneration, including both proteins (Skene & Shooter 1983; Muller et al. 1986) and mRNA species (Trapp et al. 1988; Meier et al. 1989). To better understand nerve regeneration, we have taken two, parallel molecular approaches to study the events associated with regeneration. The first of these is to study in detail the mechanism of action of a molecule that has been implicated in the regeneration process, nerve growth factor. The second approach is to identify novel gene sequences which are regulated during regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We examined the effects of gamma knife (GK) irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL) model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF), a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK irradiation of injured peripheral nerves may have beneficial effects.  相似文献   

7.
Background aimsAdipose-derived stem cells (ADSCs) have shown great promise in the regenerative repair of injured peripheral nerves. Magnetic resonance imaging (MRI) has provided attractive advantages in tracking superparamagnetic iron oxide nanoparticle (SPION)-labeled cells and evaluating their fate after cell transplantation. This study investigated the feasibility of the use of MRI to noninvasively track ADSCs repair of peripheral nerve injury in vivo.MethodsGreen fluorescent protein (GFP)-expressing ADSCs were isolated, expanded, differentiated into an SC-like phenotype (GFP-dADSCs) at early passages and subsequently labeled with SPIONs. The morphological and functional properties of the GFP-dADSCs were assessed through the use of immunohistochemistry. The intracellular stability, proliferation and viability of the labeled cells were evaluated in vitro. Through the use of a microsurgical procedure, the labeled cells were then seeded into sciatic nerve conduits in C57/BL6 mice to repair a 1-cm sciatic nerve gap. A clinical 3-T MRI was performed to investigate the GFP-dADSCs in vitro and the transplanted GFP-dADSCs inside the sciatic nerve conduits in vivo.ResultsThe GFP-dADSCs were efficiently labeled with SPIONs, without affecting their viability and proliferation. The labeled cells implanted into the mice sciatic nerve conduit exhibited a significant increase in axonal regeneration compared with the empty conduit and could be detected by MRI. Fluorescent microscopic examination, histological analysis and immunohistochemistry confirmed the axon regeneration and MRI results.ConclusionsThese data will elucidate the neuroplasticity of ADSCs and provide a new protocol for in vivo tracking of stem cells that are seeded to repair injured peripheral nerves.  相似文献   

8.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

9.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

10.
One of the most striking features of neurons in the mature peripheral nervous system is their ability to survive and to regenerate their axons following axonal injury. To perform a comprehensive survey of the molecular mechanisms that underlie peripheral nerve regeneration, we analyzed a cDNA library derived from the distal stumps of post-injured sciatic nerve which was enriched in non-myelinating Schwann cells using cDNA microarrays. The number of up- and down-regulated genes in the transected sciatic nerve was 370 and 157, respectively, of the 9596 spotted genes. In the up-regulated group, the number of known genes was 216 and the number of expressed sequence tag (EST) sequences was 154. In the down-regulated group, the number of known genes was 103 and that of EST sequences was 54. We obtained several genes that were previously reported to be involved in regeneration of the injured neurons, such as cathepsin D, ninjurin 1, tenascin C, and co-receptor for glial cell line-derived neurotrophic factor family of trophic factors. In addition to unknown genes, there seemed to be a lot of annotated genes whose role in nerve regeneration remains unknown.  相似文献   

11.
12.
Tropic 1808基因在大鼠损伤神经组织中的表达   总被引:1,自引:1,他引:1  
目的观察Tropic 1808基因在大鼠正常和损伤坐骨神经组织中的表达,探讨Tropic 1808基因在周围神经损伤与再生过程中的作用.方法采用地高辛标记的Tropic 1808 cDNA探针、抗大鼠S-100蛋白抗体,以原位杂交和免疫组织化学双重染色法,观察Tropic 1808基因在正常和损伤大鼠坐骨神经组织中的表达.结果免疫组化结果显示,大鼠正常坐骨神经可表达S-100蛋白,但表达量较低;神经损伤后,其远侧端S-100蛋白的表达量明显增加.原位杂交结果显示,大鼠正常坐骨神经组织未见Tropic 1808 mRNA杂交信号;损伤神经的远侧端呈现较强的阳性信号,而且在部分S-100强阳性反应区可见Tropic 1808 mRNA杂交信号.结论 Tropic 1808基因在正常坐骨神经组织中未见表达;坐骨神经损伤后,其远侧端增殖的雪旺氏细胞可表达Tropic 1808 mRNA.提示,Tropic 1808是一种周围神经损伤后特异表达的基因.  相似文献   

13.
ABSTRACT: BACKGROUND: Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). RESULTS: Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. CONCLUSION: We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.  相似文献   

14.

Background

Based on growing evidence that some adult multipotent cells necessary for tissue regeneration reside in the walls of blood vessels and the clinical success of vein wrapping for functional repair of nerve damage, we hypothesized that the repair of nerves via vein wrapping is mediated by cells migrating from the implanted venous grafts into the nerve bundle.

Methodology/Principal Findings

To test the hypothesis, severed femoral nerves of rats were grafted with venous grafts from animals of the opposite sex. Nerve regeneration was impaired when decellularized or irradiated venous grafts were used in comparison to untreated grafts, supporting the involvement of venous graft-derived cells in peripheral nerve repair. Donor cells bearing Y chromosomes integrated into the area of the host injured nerve and participated in remyelination and nerve regeneration. The regenerated nerve exhibited proper axonal myelination, and expressed neuronal and glial cell markers.

Conclusions/Significance

These novel findings identify the mechanism by which vein wrapping promotes nerve regeneration.  相似文献   

15.
The regeneration of the adult mammalian central nervous system (CNS) requires changes of the nonpromising environment. Applying peripheral nerve grafts and their extracts are both the useful method to induce regeneration of injured CNS neurites. Our previous reports showed that degeneration of peripheral nerves enhanced their neurotrophic activity in a time-dependent manner. Electrophoretical analysis of proteins obtained from degenerating sciatic nerves revealed significant changes in fractions of low molecular mass. The aim of the present work was to examine the influence of fractionated extracts from 7-day-predegenerated and non-predegenerated peripheral nerves upon injured hippocampal neurites in adult rats. The extracts were closed in fibrin-filled connective tissue chambers (CTC) or within CTC-wrapped polymer hollow fibers (PHF) of 30 kDa cut-off. The cell bodies of regrowing fibers were labeled with FITC-HRP. The CTCs appeared to be useful tool for implantation of artificial grafts into mammalian CNS. Full-spectrum nerve extracts induced strong regeneration of injured hippocampal neurites. The number of labeled cells within hippocampus was significantly lower in PHF groups than in CTC ones, indicating that low-mass proteins present in peripheral nerve extracts are not sufficient to induce successful regeneration.  相似文献   

16.
The poor regeneration capability of the mammalian hearing organ has initiated different approaches to enhance its functionality after injury. To evaluate a potential neuronal repair paradigm in the inner ear and cochlear nerve we have previously used embryonic neuronal tissue and stem cells for implantation in vivo and in vitro. At present, we have used in vitro techniques to study the survival and differentiation of Sox1-green fluorescent protein (GFP) mouse embryonic stem (ES) cells as a monoculture or as a coculture with rat auditory brainstem slices. For the coculture, 300 microm-thick brainstem slices encompassing the cochlear nucleus and cochlear nerve were prepared from postnatal SD rats. The slices were propagated using the membrane interface method and the cochlear nuclei were prelabeled with DiI. After some days in culture a suspension of Sox1 cells was deposited next to the brainstem slice. Following deposition Sox1 cells migrated toward the brainstem and onto the cochlear nucleus. GFP was not detectable in undifferentiated ES cells but became evident during neural differentiation. Up to 2 weeks after transplantation the cocultures were fixed. The undifferentiated cells were evaluated with antibodies against progenitor cells whereas the differentiated cells were determined with neuronal and glial markers. The morphological and immunohistochemical data indicated that Sox1 cells in monoculture differentiated into a higher percentage of glial cells than neurons. However, when a coculture was used a significantly lower percentage of Sox1 cells differentiated into glial cells. The results demonstrate that a coculture of Sox1 cells and auditory brainstem present a useful model to study stem cell differentiation.  相似文献   

17.
We previously showed that the stem cell marker nestin is expressed in hair follicle stem cells which suggested their pluripotency. We subsequently showed that the nestin‐expressing hair‐follicle pluripotent stem (hfPS) cells can differentiate in culture to neurons, glial cells, keratinocytes, and other cell types and can promote regeneration of peripheral nerve and spinal cord injuries upon injection to the injured nerve or spinal cord. The location of the hfPS cells has been termed the hfPS cell area (hfPSCA). Previously, hfPS cells were cultured for 1–2 months before transplantation to the injured nerve or spinal cord which would not be optimal for clinical application of these cells for nerve or spinal cord repair, since the patient should be treated soon after injury. In the present study, we addressed this issue by directly using the upper part of the hair follicle containing the hfPSCA, without culture, for injection into the severed sciatic nerve in mice. After injection of hfPSCA, the implanted hfPS cells grew and promoted joining of the severed nerve. The transplanted hfPS cells differentiated mostly to glial cells forming myelin sheaths, which promoted axonal growth and functional recovery of the severed nerve. These results suggest that the direct transplantation of the uncultured upper part of the hair follicle containing the hfPSA is an important method to promote the recovery of peripheral nerve injuries and has significant clinical potential. J. Cell. Biochem. 110: 272–277, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
目的:周围神经再生过程中巨噬细胞发挥了重要的作用,然而目前对于神经内内源性和外源性巨噬细胞的具体作用了解的却很少,因此本实验研究了小鼠坐骨神经损伤后早期再生过程中内源性和外源性巨噬细胞数量比例变化的情况,探索周围神经再生的规律。方法:移植CAG-EGFP转基因小鼠的全骨髓有核细胞到骨髓灭活野生型C5781/6小鼠体内建立嵌合体小鼠模型。待移植成功3个月后夹伤小鼠一侧坐骨神经,并在损伤后第2、7、14和28天取材、切片,使用巨噬细胞特异性抗体cD68进行免疫荧光染色,分析损伤神经段中内源性巨噬细胞(CD68+/EGFP-)、外源性巨噬细胞(CD68+/EGFP+)的数量及其比例变化情况。结果:①夹伤骨髓移植模型小鼠坐骨神经后,参与坐骨神经损伤修复的巨噬细胞可分为两类,即内源性巨噬细胞(CD68+/EGFP-)和外源性巨噬细胞(CD68+/EGFP+);②夹伤坐骨神经后,浸润的总巨噬细胞数量从第2天开始逐渐增加,到第14天达到高峰,约为正常情况下的60倍,随后逐渐减少;③起初外、内源性巨噬细胞间的比例是1:1,差值最大出现在损伤后第14天为4:l。结论:小鼠坐骨神经夹伤后,内外源性巨噬细胞共同参与了受损神经组织远心段的修复和再生过程,损伤初期发挥作用的主要是内源性巨噬细胞,随后大量浸润的外源性巨噬细胞占主导作用。本实验首次连续观察并定量分析了神经损伤后早期内源性和外源性巨噬细胞的数量改变,证实了瓦勒氏变性过程中内源性和外源性巨噬细胞在不同阶段对巨噬细胞总量的贡献作用。  相似文献   

19.
20.
Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2?weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2?weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号