首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
通过对国内外抗微生物作用的纳米材料研究进行综述,总结几种最常应用的抗微生物作用的纳米材料的应用范围、作用原理及优缺点,为纳米材料的选用提供参考。目前抗微生物作用的纳米材料主要有金属元素型纳米材料、金属氧化物型纳米材料、非金属无机化合物型纳米材料、有机化合物型纳米材料和天然纳米材料等;纳米材料的抗微生物机制主要有催化反应与接触反应学说两种;有些纳米材料按现有制作方法和使用方法,具有一定的生物毒性。因此,今后应重视如何降低纳米材料的生物毒性以及进一步开发应用天然纳米材料的研究。  相似文献   

3.
Subnanoliter enzymatic assays on microarrays   总被引:1,自引:0,他引:1  
Many areas of research today are based on enzymatic assays most of which are still performed as enzyme-linked immunosorbent assays in microtiter plates. The demand for highly parallel screening of thousands of samples eventually led to a miniaturization and automation of these assays. However, the final transfer of enzymatic assays from a microtiter-based technology to microarrays has proven to be difficult for various reasons, such as the inability to maintain unbound reaction products on the spot of reaction or the missing capability of multiplexing. Here, we have conducted multiplex enzymatic assays in subnanoliter volumes on a single microarray using the multiple spotting technology. We were able to measure enzymatic activity with a sensitivity down to 35 enzyme molecules, applying only conventional flat microarray surfaces and standard microarray hardware. We have performed assays of inhibition and applied this format for the detection of prognostic markers, such as cathepsin D. The new approach allows the rapid and multiplex screening of thousands of samples on a single microarray with applications in drug screening, metagenomics, and high-throughput enzyme assays.  相似文献   

4.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   

5.
The bacterial RecA protein has been implicated in the evolution of antibiotic resistance in pathogens, which is an escalating problem worldwide. The discovery of small molecules that can selectively modulate RecA's activities can be exploited to tease apart its roles in the de novo development and transmission of antibiotic resistance genes. Toward the goal of discovering small-molecule ligands that can prevent either the assembly of an active RecA-DNA filament or its subsequent ATP-dependent motor activities, we report the design and initial validation of a pair of rapid and robust screening assays suitable for the identification of inhibitors of RecA activities. One assay is based on established methods for monitoring ATPase enzyme activity and the second is a novel assay for RecA-DNA filament assembly using fluorescence polarization. Taken together, the assay results reveal complementary sets of agents that can either suppress selectively only the ATP-driven motor activities of the RecA-DNA filament or prevent assembly of active RecA-DNA filaments altogether. The screening assays can be readily configured for use in future automated high-throughput screening projects to discover potent inhibitors that may be developed into novel adjuvants for antibiotic chemotherapy that moderate the development and transmission of antibiotic resistance genes and increase the antibiotic therapeutic index.  相似文献   

6.
Biodegradation of wastepaper by cellulase from Trichoderma viride   总被引:7,自引:0,他引:7  
Environmental issues such as the depletion of non-renewable energy resources and pollution are topical. The extent of solid waste production is of global concern and development of its bioenergy potential can combine issues such as pollution control and bioproduct development, simultaneously. Various wastepaper materials, a major component of solid waste, were treated with the cellulase enzyme from Trichoderma viride, thus bioconverting their cellulose component into fermentable sugars. All wastepaper materials exhibited different susceptibilities towards the cellulase as well as the production of non-similar sugar releasing patterns when increasing amounts of paper were treated with a fixed enzyme concentration. The hydrolysis of wastepaper with changing enzyme concentrations and incubation periods also resulted in dissimilar sugar-producing tendencies. A general decline in hydrolytic efficiency was observed when increasing sugar concentrations were produced during biodegradation of all wastepaper materials.  相似文献   

7.
Abstract

A variety of support materials for sol-gel immobilized lipase were considered based on their ability to provide superior sol-gel adhesion, load protein, and synthesize methyl oleate. A standard approach was developed to formulate the supported lipase sol-gels and to allow comparison of the resulting hybrid materials. These supported sol-gels are proposed as an alternative immobilization regime to overcome some challenges associated with enzymatic biodiesel production such as enzyme stability and cost. The support materials considered were 6–12 mesh silica gel, Celite® R633, Celite® R632, Celite® R647, anion-exchange resin AG3-X4, and Quartzel® felt. Each support material exhibited unique properties that would be beneficial for this application including: Quartzel® felt had the highest initial sol-gel capacity (62.5 mL/g) and sol-gel adhesion (1100 mg sol-gel/g material); silica gel had the most uniform coating of deposited sol-gel; the anion-exchange resin AG3-X4 supported sol-gel had the highest protein loading (1060 μg lipase/g) and reaction rate [1.25 mM/(min g-material)]; the Celite® support series were the most thermally stable and had the lowest water content; and the Celite® R632 supported lipase sol-gels had the highest 6 h biodiesel conversion per gram of supported material (68%) and enzymatic activity [9.4 mmol/(min g-lipase)]. The supported sol-gels with the highest enzymatic properties (conversion, activity, and reaction rate) were those supported on Celite® R632, anion-exchange resin AG3-X4, and Quartzel®. These supported sol-gels had superior performance in comparison with the unsupported sol-gels. Based on this study, the lipase sol-gel support material with the most potential for biodiesel production is Celite® R632.  相似文献   

8.
目的通过比较以组分Ⅲ沉淀和血浆为原料制备人凝血酶原复合物(Prothrombin complex concentrates,PCC)过程中凝血因子活化情况,为选择最适PCC制备原料提供数据支持。方法分别对以组分Ⅲ沉淀和血浆为原料制备PCC过程中中间品的活化的凝血因子活性和人凝血酶活性两个项目进行检定,分析凝血因子的活化情况。观察以组分Ⅲ沉淀为原料制备PCC过程中添加肝素能否抑制PCC中凝血因子的活化。结果以组分Ⅲ沉淀为原料制备的PCC中间品活化的凝血因子活性和人凝血酶活性两个项目均不合格。以组分Ⅲ沉淀为原料制备PCC生产过程中添加肝素后,PCC中间品的活化的凝血因子活性和人凝血酶活性均不合格。以血浆为原料制备的PCC中间品活化的凝血因子活性和人凝血酶活性两个项目均合格。结论组分Ⅲ沉淀为原料制备PCC会增加凝血因子活化的风险,新鲜冰冻血浆可作为制备PCC的原料。  相似文献   

9.
Small-molecule microarrays are powerful, high-throughput tools for gathering information about direct binding events between proteins of interest and small molecules. However, nonspecific binding on modified glass slides is the major factor reducing the quality of information obtained in proteomic screening with small-molecule microarrays. To improve the signal-to-noise ratio by suppressing the background signal, we tested several surface modification methods for glass slides. Jeffamine-coated slides showed a high fluorescence signal and a significantly enhanced signal-to-noise ratio. We applied this surface modification to proteomic screening of potential tyrosinase inhibitors with a small-molecule microarray and identified 2,4,4'-trihydroxychalcone as a new small-molecule binder to tyrosinase. Its actual binding and inhibitory effects on tyrosinase were validated using an SPR binding assay and an enzyme-based inhibition assay, respectively. Thus, we successfully demonstrate the application of Jeffamine-based modification to proteomics screening with small-molecule microarrays.  相似文献   

10.
11.
The retention and binding mechanisms in electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (covalent attachment of polyethylene glycol chains to protein) were investigated using our previously developed model. Lysozyme and bovine serum albumin were chosen as model proteins. The retention volume of PEGylated proteins shifted to lower elution volumes with increasing PEG molecular weight compared with the non-modified (native) protein retention volume. However, PEGylation did not affect the number of binding sites appreciably. The enzyme activity of PEGylated lysozyme measured with a standard insoluble substrate in suspension decreased considerably, whereas the activity with a soluble small-molecule substrate did not drop significantly. These findings indicate that when a protein is mono-PEG-ylated, the binding site is not affected and the elution volume reduces due to the steric hindrance between PEGylated protein and ion-exchange ligand.  相似文献   

12.
Cancer immunotherapy can harness the specificity of immune response to target and eliminate tumors. Adoptive cell therapy (ACT) based on the adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) has shown considerable promise in clinical trials1-4. There are several advantages to using CAR+ T cells for the treatment of cancers including the ability to target non-MHC restricted antigens and to functionalize the T cells for optimal survival, homing and persistence within the host; and finally to induce apoptosis of CAR+ T cells in the event of host toxicity5.Delineating the optimal functions of CAR+ T cells associated with clinical benefit is essential for designing the next generation of clinical trials. Recent advances in live animal imaging like multiphoton microscopy have revolutionized the study of immune cell function in vivo6,7. While these studies have advanced our understanding of T-cell functions in vivo, T-cell based ACT in clinical trials requires the need to link molecular and functional features of T-cell preparations pre-infusion with clinical efficacy post-infusion, by utilizing in vitro assays monitoring T-cell functions like, cytotoxicity and cytokine secretion. Standard flow-cytometry based assays have been developed that determine the overall functioning of populations of T cells at the single-cell level but these are not suitable for monitoring conjugate formation and lifetimes or the ability of the same cell to kill multiple targets8.Microfabricated arrays designed in biocompatible polymers like polydimethylsiloxane (PDMS) are a particularly attractive method to spatially confine effectors and targets in small volumes9. In combination with automated time-lapse fluorescence microscopy, thousands of effector-target interactions can be monitored simultaneously by imaging individual wells of a nanowell array. We present here a high-throughput methodology for monitoring T-cell mediated cytotoxicity at the single-cell level that can be broadly applied to studying the cytolytic functionality of T cells.  相似文献   

13.
The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach.Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli.Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number, chaperonin co-expression, post-translational enzymatic modification, and process temperature were also required to allow final erythromycin A formation.Finally, successful production must be assessed. For the erythromycin A case, we will present two methods. The first is liquid chromatography-mass spectrometry (LC-MS) to confirm and quantify production. The bioactivity of erythromycin A will also be confirmed through use of a bioassay in which the antibiotic activity is tested against Bacillus subtilis. The assessment assays establish erythromycin A biosynthesis from E. coli and set the stage for future engineering efforts to improve or diversify production and for the production of new complex natural compounds using this approach.  相似文献   

14.
Abstract

Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu, Tyr)1:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   

15.
With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.  相似文献   

16.
Recent progress characterizing the reaction mechanism(s) of fluorescent probes with reactive oxygen species has made it possible to rigorously analyze these reactive species in biological systems. We have developed rapid high throughput-compatible assays for monitoring cellular production of superoxide radical anion and hydrogen peroxide using hydropropidine and coumarin boronic acid probes, respectively. Coupling plate reader-based fluorescence measurements with HPLC-based simultaneous monitoring of superoxide radical anion and hydrogen peroxide provides the basis for the screening protocol for NADPH oxidase (Nox) inhibitors. Using this newly developed approach along with the medium-throughput plate reader-based oximetry and EPR spin trapping as confirmatory assays, it is now eminently feasible to rapidly and reliably identify Nox enzyme inhibitors with a markedly lower rate of false positives. These methodological advances provide an opportunity to discover selective inhibitors of Nox isozymes, through enhanced conceptual understanding of their basic mechanisms of action.  相似文献   

17.
To the extent that environmental impacts are the consequence of the magnitude of total material input into production in an economy, they can be lessened by reducing the use of materials—by concentrating on what has been called qualitative growth. This article presents a summary of Finnish resource use over the period 1960–1996 as a means of evaluating the trends in material use and providing a basis for assessments of sustainability. It adapts the technique of decomposition analysis developed in the field of energy studies to distinguish the effects of changes in aggregate economic activity ("activity effect"), composition of industrial activity ("structural effect") and materials intensity of use ("intensity effect") on a sectoral basis.p
According to the analysis presented here, materials consumption in Finland has grown substantially between 1960 and 1996 in the electricity, gas and water supply, pulp and paper production, civil engineering, and mining and quarrying sectors. In the same period, the ratio of GDP/mass of material mobilized has improved by 175 percent. Economic growth has caused the largest increases in materials use in the building of infrastructures; for example roads, waterways, means of supplying electricity, gas, and water, and in the production of paper and paper products. The least growth took place in the transport, basic metals production, and mining and quarrying sectors.  相似文献   

18.
We developed versatile low-cost arrays of sol-gel-encapsulated enzymes (referred to as solzymes) suitable for repeated assays of bioactivity or enzyme inhibition. Sol-gel microstructures containing active enzymes were stabilized on glass at moderate pH and room temperature without harsh calcination. A multi-well bilayer of polydimethylsiloxane was used to support the solzyme array and contain the reaction medium. Each of the 147 microwells has a working volume of 5 muL and contains 50 mug of immobilized enzyme. The solzyme arrays maintained high activity through repeated applications and exhibited superior thermostability compared to soluble enzymes. Among the enzymes used were lipases, glucose oxidase, and horseradish peroxidase. Twenty different lipases and proteases were also used to prepare a hydrolase array, for which bromthymol blue served as a generic indicator of activity. The relative activities of the encapsulated hydrolases correlated closely with those of the soluble hydrolases, illustrating that sol-gel encapsulation preserved the hierarchy of enzyme activity. The development of solzyme arrays paves the way to higher throughput screening of diverse proteins and enzymes, including those that are available only in trace amounts.  相似文献   

19.
An improved assay for screening for the intracellular delivery efficacy of short oligonucleotides using cell-penetrating peptides is suggested. This assay is an improvement over previous assays that use luciferase reporters for cell-penetrating peptides because it has been scaled up from a 24-well format to a 96-well format and no longer relies on a luciferin reagent that has been commercially sourced. In addition, the homemade luciferin reagent is useful in multiple cell lines and in different assays that rely on altering the expression of luciferase. To establish a new protocol, the composition of the luciferin reagent was optimized for both signal strength and longevity by multiple two-factorial experiments varying the concentrations of adenosine triphosphate, luciferin, coenzyme A, and dithiothreitol. In addition, the optimal conditions with respect to cell number and time of transfection for both short interfering RNA (siRNA) and splice-correcting oligonucleotides (SCOs) are established. Optimal transfection of siRNA and SCOs was achieved using the reverse transfection method where the oligonucleotide complexes are already present in the wells before the cells are plated. Z′ scores were 0.73 for the siRNA assay and 0.71 for the SCO assay, indicating that both assays are suitable for high-throughput screening.  相似文献   

20.
玉米秸秆分批补料获得高还原糖浓度酶解液的条件优化   总被引:2,自引:1,他引:2  
木质纤维素高浓度还原糖水解液的获得是纤维乙醇产业化发展的方向。在发酵工业领域,分批补料法是实现这一目标的重要研究途径。本研究采用分批补料法对获得高浓度玉米秸秆酶解还原糖的条件进行了优化。以稀硫酸预处理的玉米秸秆为原料,考察了液固比、补加量与补加时间对分批补料糖化的影响。结果表明,秸秆高浓度酶解液条件的初始物料为20% (重量/体积),木聚糖酶220 U/g (底物),纤维素酶6 FPU/g (底物),果胶酶50 U/g (底物),在24 h、48 h后分批补加8%预处理后的物料,同时添加与补料量相应的木聚糖酶20 U/g (底物),纤维素酶2 FPU/g (底物),72 h后,最终糖化结果与非补料法相比,还原糖浓度从48.5 g/L提高到138.5 g/L,原料的酶解率最终达到理论值的62.5%。试验结果表明补料法可以显著提高秸秆水解液还原糖浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号