首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1?ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. To study effects of different doses of gentamicin on the changes of synaptic ribbons of cochlear inner hair cells (IHCs) in mice, the availability of genetic information, transgenic and knock-out animals make the C57BL/6J mouse a primary model in biomedical research. Aminoglycoside ototoxicity, however, has rarely been studied in mature mice because they are considered highly resistant to the drugs. This study presents models for gentamicin ototoxicity in adult C57BL/6J mouse strains. Five-week-old mice were injected intraperitoneally once daily with 50?C300?mg gentamicin base/kg body weight for 7?days. Higher doses of gentamicin appear to be associated with earlier hearing damage in C57BL/6J mice, although not necessarily with more severe damage. At 200?mg/kg, gentamicin appears to induce significant hearing damage while not significantly affect the animal??s general condition. Therefore, 200?mg/kg may be an ideal dose for ototoxicity modeling in C57BL/6J mice using gentamicin. In the early period of different dose of gentamicin effect, when the number of hair cells had not changed, the number changes of IHC ribbon synapses had taken place. Through the number of ribbon synapses changing, IHCs increased or decreased connections with spiral ganglion nerves (SGNs). The ribbon synapses played a compensatory role for gentamicin ototoxicity, while this effect was not sufficient to maintain the normal threshold of hearing.  相似文献   

2.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

3.
The structures of cochlear transduction include stereocilia at the apical surface of hair cells and their connection to the tectorial membrane. The transduction site is one of the loci for noise-induced cochlear damage. Although stereocilia are susceptible to noise, it has been found that in the inner ears of avians, this fragile structure is largely self-repairing and is associated with recovery of hearing sensitivity after noise exposure, as observed in the difference between the temporal threshold shift (TTS) and the permanent threshold shift (PTS). In the mammalian cochleae, however, threshold shifts measured in the auditory brainstem responses (ABR) did not parallel the chronological changes in the stereocilia on hair cells. It is unclear how the morphological recovery of the stereocilia on the mammalian hair cells is correlated with the changes in cochlear transduction that can be assessed by measuring receptor potential. In the present study, guinea pigs were exposed to a broadband noise of 110 dB SPL for 2 h. Auditory sensitivity was evaluated using ABR and cochlear transduction was assessed using cochlear microphonics (CM). Stereocilia morphology was quantified at different time points after the noise and compared with the control. The noise produced a TTS of 55.69 ± 14.13 dB in frequency-averaged ABR thresholds. The threshold shift was reduced to 9.58 ± 11.75 dB SPL 1 month later with virtually no loss of hair cells. Damage to the stereocilia immediately after noise exposure was found to be associated with depression of CM amplitude. Virtually no abnormal stereocilia were observed 1 month after the noise in association with a fully recovered CM.  相似文献   

4.
Structure and Function of the Hair Cell Ribbon Synapse   总被引:6,自引:0,他引:6  
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years.  相似文献   

5.
A certain degree of noise can cause hearing problems without a permanent change in the hearing threshold, which is called hidden hearing loss and results from partial loss of auditory synapses. Photobiomodulation (PBM) enhances neural growth and connections in the peripheral nervous systems. In this study, we assessed whether PBM could rescue cochlear synaptopathy after acoustic overexposure in rat. PBM was performed for 7 days after noise exposure. The auditory brainstem responses (ABRs) were acquired before and after noise exposure using a tone and a paired‐click stimulus. Auditory response to paired click sound with short time interval was performed to evaluate auditory temporal processing ability. In the result, hearing threshold recovered 2 weeks after noise exposure in both groups. Peak wave 1 amplitude of the ABR and ABR recovery threshold did not recover in the noise only group, whereas it fully recovered in the noise + PBM group. The number of synaptic ribbons was significantly different in the control and noise only groups, while there was no difference between the control and noise + PBM group. These results indicate that PBM rescued peak wave 1 amplitude and maintained the auditory temporal processing ability resulting from a loss of synaptic ribbons after acoustic overexposure.  相似文献   

6.
The afferent synapse of cochlear hair cells   总被引:8,自引:0,他引:8  
Mechanosensory hair cells of the cochlea must serve as both transducers and presynaptic terminals, precisely releasing neurotransmitter to encode acoustic signals for the postsynaptic afferent neuron. Remarkably, each inner hair cell serves as the sole input for 10-30 individual afferent neurons, which requires extraordinary precision and reliability from the synaptic ribbons that marshal vesicular release onto each afferent. Recent studies of hair cell membrane capacitance and postsynaptic currents suggest that the synaptic ribbon may operate by simultaneous multi-vesicular release. This mechanism could serve to ensure the accurate timing of transmission, and further challenges our understanding of this synaptic nano-machine.  相似文献   

7.
8.
The ribbon synapses of inner hair cells (IHCs) play an important role in sound encoding and neurotransmitter release. However, it remains unclear whether IHC ribbon synapse plasticity can be interrupted by ototoxic aminoglycoside stimuli. Here, we report that quantitative changes in the number of IHC ribbon synapses and hearing loss occur in response to gentamicin treatment in mice. Using 3D reconstruction, we were able to calculate the number of IHC ribbon synapses after ototoxic gentamicin exposure. Mice were injected intraperitoneally with a low dose of gentamicin (100 mg/kg) once a day for 14 days. Double immunostaining was used to identify IHC ribbon synapses; histopathology and scanning electron microscopy were used to observe the morphology of cochlear hair cells and spiral ganglion neurons (SGNs), the hearing threshold shifts were recorded by auditory brainstem response examinations. Our study shows that the maximal number of IHC ribbon synapses appeared at the 7th day after treatment, followed by a significant reduction after the 7th day regardless of ongoing treatment. Correspondingly, the maximal elevation of hearing threshold was observed at the 7th day after treatment. Meanwhile, additional cochlear components included OHCs, IHCs, and SGNs were unaffected, suggesting that IHC ribbon synapses are more susceptible to ototoxic aminoglycoside stimulation. Our study indicated that quantitative changes in the number of IHC ribbon synapses is critical response to lower dose of ototoxic stimulation, and may contribute to moderate hearing loss. Additionally, our data indcated that ribbon synaptic plasticity may require the quantitative changes to play self-protective role adapted to ototoxic aminoglycoside stimuli.  相似文献   

9.
10.
11.
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon‐specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca2+‐buffer EGTA, suggesting that synaptic ribbons mediate nano‐domain coupling of Ca2+ channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano‐domains that position release‐ready synaptic vesicles adjacent to Ca2+ channels.  相似文献   

12.
Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite the completely reversible temporary threshold shift (TTS) and morphologically intact hair cells. Our objective was to determine whether a cochlear synaptopathy followed by neuropathy occurs after noise exposure in pubescence, and to define neuropathic versus non-neuropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16 kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the threshold for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL caused permanent threshold shift although exposure of 16 week old mice to the same noise is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response, which reflects the summed activity of the cochlear nerve, was complemented by synaptic ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure. Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24 hours post exposure, and delayed neurodegeneration characterized by axonal retraction at 8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage was initially limited to the cochlear base, it progressed to also involve the cochlear apex by 8 months post exposure. Our data demonstrate a fine line between neuropathic and non-neuropathic noise levels associated with TTS in the pubescent cochlea.  相似文献   

13.
To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.  相似文献   

14.
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.  相似文献   

15.
The present study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 h a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into four groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by auditory brainstem response (ABR) and compound action potential (CAP) recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed 1 day, 1 week, and 1 month after noise exposure. After MTMI noise exposure, the amplitudes of ABR I and III waves were suppressed. The CAP threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement, or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss (HHL), which is partially reversible after leaving the noise environment; and MTMI noise-induced HHL is associated with inner hair cell ribbon synapses.  相似文献   

16.
Munc119 (also denoted as RG4) is a mammalian ortholog of the Caenorhabditis elegans protein unc119 and is essential for vision and synaptic transmission at photoreceptor ribbon synapses by unknown molecular mechanisms. Munc119/RG4 is related to the prenyl-binding protein PrBP/delta and expressed at high levels in photoreceptor ribbon synapses. Synaptic ribbons are presynaptic specializations in the active zone of these tonically active synapses and contain RIBEYE as a unique and major component. In the present study, we identified Munc119 as a RIBEYE-interacting protein at photoreceptor ribbon synapses using five independent approaches. The PrBP/delta homology domain of Munc119 is essential for the interaction with the NADH binding region of RIBEYE(B) domain. But RIBEYE-Munc119 interaction does not depend on NADH binding. A RIBEYE point mutant (RE(B)E844Q) that no longer interacted with Munc119 still bound NADH, arguing that binding of Munc119 and NADH to RIBEYE are independent from each other. Our data indicate that Munc119 is a synaptic ribbon-associated component. We show that Munc119 can be recruited to synaptic ribbons via its interaction with RIBEYE. Our data suggest that the RIBEYE-Munc119 interaction is essential for synaptic transmission at the photoreceptor ribbon synapse.  相似文献   

17.
Synaptic ribbons, the organelles identified in electron micrographs of the sensory synapses involved in vision, hearing, and balance, have long been hypothesized to play an important role in regulating presynaptic function because they associate with synaptic vesicles at the active zone. Their physiology and molecular composition have, however, remained largely unknown. Recently, a series of elegant studies spurred by technical innovation have finally begun to shed light on the ultrastructure and function of ribbon synapses. Electrical capacitance measurements have provided sub-millisecond resolution of exocytosis, evanescent-wave microscopy has filmed the fusion of single 30 nm synaptic vesicles, electron tomography has revealed the 3D architecture of the synapse, and molecular cloning has begun to identify the proteins that make up ribbons. These results are consistent with the ribbon serving as a vesicle "conveyor belt" to resupply the active zone, and with the suggestion that ribbon and conventional chemical synapses have much in common.  相似文献   

18.
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.  相似文献   

19.
20.
The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expression in the hair cells correlates with afferent synaptogenesis and find that otoferlin localizes to ribbon-associated synaptic vesicles. Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25. Otoferlin deficient mice (Otof(-/-)) are profoundly deaf. Exocytosis in Otof(-/-) IHCs is almost completely abolished, despite normal ribbon synapse morphogenesis and Ca(2+) current. Thus, otoferlin is essential for a late step of synaptic vesicle exocytosis and may act as the major Ca(2+) sensor triggering membrane fusion at the IHC ribbon synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号