首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5′-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5′ to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5′-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5′-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran:G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5′ of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5′ to 8-oxoG deter its repair thereby enhancing its mutagenic potential.  相似文献   

2.
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and MichaelisMenten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.  相似文献   

3.
DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C → T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2′-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.  相似文献   

4.
5.
Human 8-oxoguanine-DNA glycosylase OGG1 is an enzyme that removes abundant oxidative lesion 8-oxoguanine (8-oxoG) from DNA. Excision of 8-oxoG by OGG1 is inhibited by the abasic DNA reaction product and is stimulated by AP endonuclease APEX1. Besides 8-oxoG, OGG1 shows activity towards several other base lesions. Here we report that APEX1 efficiently stimulates OGG1 on good substrates (8-oxoadenine, 8-oxoinosine, or 6-methoxy-8-oxoguanine opposite to cytosine) but the stimulation is low or absent with poor OGG1 substrates (8-oxoadenine or 8-oxoinosine opposite to thymine; 8-oxoG or 8-aminoguanine opposite to adenine; 8-oxonebularine, 8-metoxyguanine, inosine or guanine opposite to cytosine). APEX1 significantly improves the ability of OGG1 to excise 8-aminoguanine from its naturally occurring pair with cytosine, making it possible that OGG1 repairs this lesion. Overall, APEX1 serves to improve specificity of OGG1 for its biologically relevant substrates.  相似文献   

6.
Oxoguanine DNA glycosylase (OGG1) initiates the repair of 8-oxoguanine (8-oxoG), a major oxidative DNA base modification that has been directly implicated in cancer and aging. OGG1 functions in the base excision repair pathway, for which a molecular hand-off mechanism has been proposed. To date, only one functional and a few physical protein interactions have been reported for OGG1. Using the yeast two-hybrid system and a protein array membrane, we identified two novel protein interactions of OGG1, with two different protein kinases: Cdk4, a serine-threonine kinase, and c-Abl, a tyrosine kinase. We confirmed these interactions in vitro using recombinant proteins and in vivo by co-immunoprecipitation from whole cell extracts. OGG1 is phosphorylated in vitro by Cdk4, resulting in a 2.5-fold increase in the 8-oxoG/C incision activity of OGG1. C-Abl tyrosine phosphorylates OGG1 in vitro; however, this phosphorylation event does not affect OGG1 8-oxoG/C incision activity. These results provide the first evidence that a post-translational modification of OGG1 can affect its catalytic activity. The distinct functional outcomes from serine/threonine or tyrosine phosphorylation may indicate that activation of different signal transduction pathways modulate OGG1 activity in different ways.  相似文献   

7.
Human 8-oxoguanine-DNA glycosylase (OGG1) is the main human base excision protein that removes a mutagenic lesion 8-oxoguanine (8-oxoG) from DNA. Since OGG1 has DNA glycosylase and weak abasic site (AP) lyase activities and is characterized by slow product release, turnover of the enzyme acting alone is low. Recently it was shown that human AP endonuclease (APE1) enhances the activity of OGG1. This enhancement was proposed to be passive, resulting from APE1 binding to or cleavage of AP sites after OGG1 dissociation. Here we present evidence that APE1 could actively displace OGG1 from its product, directly increasing the turnover of OGG1. We have observed that APE1 forms an electrophoretically detectable complex with OGG1 cross-linked to DNA by sodium borohydride. Using oligonucleotide substrates with a single 8-oxoG residue located in their 5'-terminal, central or 3'-terminal part, we have demonstrated that OGG1 activity does not increase only for the first of these three substrates, indicating that APE1 interacts with the DNA stretch 5' to the bound OGG1 molecule. In kinetic experiments, APE1 enhanced the product release constant but not the rate constant of base excision by OGG1. Moreover, OGG1 bound to a tetrahydrofuran analog of an abasic site stimulated the activity of APE1 on this substrate. Using a concatemeric DNA substrate, we have shown that APE1 likely displaces OGG1 in a processive mode, with OGG1 remaining on DNA but sliding away in search for a new lesion. Altogether, our data support a model in which APE1 specifically recognizes an OGG1/DNA complex, distorts a stretch of DNA 5' to the OGG1 molecule, and actively displaces the glycosylase from the lesion.  相似文献   

8.
9.
7,8-dihydro-8-oxoguanine (8-oxoG) is one of the major DNA lesions formed by reactive oxygen species that can result in transversion mutations following replication if left unrepaired. In human cells, the effects of 8-oxoG are counteracted by OGG1, a DNA glycosylase that catalyzes excision of 8-oxoguanine base followed by a much slower beta-elimination reaction at the 3'-side of the resulting abasic site. Many features of OGG1 mechanism, including its low beta-elimination activity and high specificity for a cytosine base opposite the lesion, remain poorly explained despite the availability of structural information. In this study, we analyzed the substrate specificity and the catalytic mechanism of OGG1 acting on various DNA substrates using stopped-flow kinetics with fluorescence detection. Combining data on intrinsic tryptophan fluorescence to detect conformational transitions in the enzyme molecule and 2-aminopurine reporter fluorescence to follow DNA dynamics, we defined three pre-excision steps and assigned them to the processes of (i) initial encounter with eversion of the damaged base, (ii) insertion of several enzyme residues into DNA, and (iii) enzyme isomerization to the catalytically competent form. The individual rate constants were derived for all reaction stages. Of all conformational changes, we identified the insertion step as mostly responsible for the opposite base specificity of OGG1 toward 8-oxoG:C as compared with 8-oxoG:T, 8-oxoG:G, and 8-oxoG:A. We also investigated the kinetic mechanism of OGG1 stimulation by 8-bromoguanine and showed that this compound affects the rate of beta-elimination rather than pre-excision dynamics of DNA and the enzyme.  相似文献   

10.
《Nucleic acids research》2020,48(21):12234
Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.  相似文献   

11.
7,8-Dihydro-8-oxoguanine (8-oxoG) is the major oxidative product of guanine and the most prevalent base lesion observed in DNA molecules. Because 8-oxoG has the capability to form a Hoogsteen pair with adenine (8-oxoG:A) in addition to a normal Watson–Crick pair with cytosine (8-oxoG:C), this lesion can lead to a G:C  T:A transversion after replication. However, 8-oxoG is recognized and excised by the 8-oxoguanine DNA glycosylase (Ogg) of the base excision repair pathway. Members of the Ogg1 family usually display a strong preference for a C opposite the lesion. In contrast, the atypical Ogg1 from Clostridium actetobutylicum (CacOgg) can excise 8-oxoG when paired with either one of the four bases, albeit with a preference for C and A. Here we describe the first high-resolution crystal structures of CacOgg in complex with duplex DNA containing the 8-oxoG lesion paired to cytosine and to adenine. A structural comparison with human OGG1 provides a rationale for the lack of opposite base specificity displayed by the bacterial Ogg.  相似文献   

12.
Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.  相似文献   

13.
8-Oxo-7,8-dihydroguanine (8-oxoG), arguably the most abundant base lesion induced in mammalian genomes by reactive oxygen species, is repaired via the base excision repair pathway that is initiated with the excision of 8-oxoG by OGG1. Here we show that OGG1 binds the 8-oxoG base with high affinity and that the complex then interacts with canonical Ras family GTPases to catalyze replacement of GDP with GTP, thus serving as a guanine nuclear exchange factor. OGG1-mediated activation of Ras leads to phosphorylation of the mitogen-activated kinases MEK1,2/ERK1,2 and increasing downstream gene expression. These studies document for the first time that in addition to its role in repairing oxidized purines, OGG1 has an independent guanine nuclear exchange factor activity when bound to 8-oxoG.  相似文献   

14.

Background

Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration.

Methods

We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats.

Results

It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions.

Conclusions

Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats.

General significance

The findings are important for validation of the OXYS rat strain as a model of mammalian aging.  相似文献   

15.
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4–5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.  相似文献   

16.
Patients with Alzheimer's disease (AD) exhibit higher levels of 8-oxo-guanine (8-oxoG) DNA lesions in their brain, suggesting a reduced or defective 8-oxoG repair. To test this hypothesis, this study investigated 14 AD patients and 10 age-matched controls for mutations of the major 8-oxoG removal gene OGG1. Whereas no alterations were detected in any control samples, four AD patients exhibited mutations in OGG1, two carried a common single base (C796) deletion that alters the carboxyl terminal sequence of OGG1, and the other two had nucleotide alterations leading to single amino acid substitutions. In vitro biochemical assays revealed that the protein encoded by the C796-deleted OGG1 completely lost its 8-oxoG glycosylase activity, and that the two single residue-substituted OGG1 proteins showed a significant reduction in the glycosylase activity. These results were consistent with the fact that nuclear extracts derived from a limited number of AD patients with OGG1 mutations exhibited greatly reduced 8-oxoG glycosylase activity compared with age-matched controls and AD patients without OGG1 alterations. Our findings suggest that defects in OGG1 may be important in the pathogenesis of AD in a significant fraction of AD patients and provide new insight into the molecular basis for the disease.  相似文献   

17.
A major DNA lesion is the strongly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) base, formed by oxidative attack at guanine and which leads to a high level of G.C-->T.A transversions. Clustered DNA damages are formed in DNA following exposure to ionizing radiation or radiomimetic anticancer agents and are thought to be biologically severe. The presence of 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell, if the OGG1 DNA glycosylase/AP lyase protein, present in eukaryotic cells, does not efficiently excise its substrate, 8-oxoG. In this study, specific oligonucleotide constructs containing an 8-oxoG located in several positions opposite to another damage (5,6-dihydrothymine (DHT), uracil, 8-oxoG, AP site, or various types of single strand breaks) were used to determine the relative efficiency of purified human OGG1 and mammalian XRS5 nuclear extracts to excise 8-oxoG from clustered damages. A base damage (DHT, uracil, and 8-oxoG) on the opposite strand has little or no influence on the rate of excision of 8-oxoG whereas the presence of either an AP site or various types of single strand breaks has a strong inhibitory effect on the formation of a SSB due to the excision of 8-oxoG by both hOGG1 and the nuclear extract. The binding of hOGG1 to 8-oxoG is not significantly affected by the presence of a neighboring lesion.  相似文献   

18.
7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic lesion produced in DNA exposed to free radicals and reactive oxygen species. In Saccharomyces cerevisiae, the OGG1 gene encodes the 8-oxoG DNA N-glycosylase/AP lyase (Ogg1), which is the functional homologue of the bacterial Fpg. Ogg1-deficient strains are spontaneous mutators that accumulate GC to TA transversions due to unrepaired 8-oxoG in DNA. In yeast, DNA mismatch repair (MMR) and translesion synthesis (TLS) by DNA polymerase η also play a role in the prevention of the mutagenic effect of 8-oxoG. In the present study, we show the RAD18 and RAD6 genes that are required to initiate post-replication repair (PRR) are also involved in the prevention of mutations by 8-oxoG. Consistently, a synergistic increase in spontaneous CanR and Lys+ mutation rates is observed in the absence of Rad6 or Rad18 proteins in ogg1 mutant strains. Spectra of CanR mutations in ogg1 rad18 and ogg1 rad6 double mutants show a strong bias in the favor of GC to TA transversions, which are 137- and 189-fold higher than in the wild-type, respectively. The results also show that Polη (RAD30 gene product) plays a critical role on the prevention of mutations at 8-oxoG, whereas Polζ (REV3 gene product) does not. Our current model suggests that the Rad6–Rad18 complex targets Polη at DNA gaps that result from the MMR-mediated excision of adenine mispaired with 8-oxoG, allowing error-free dCMP incorporation opposite to this lesion.  相似文献   

19.
Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G·C→T·A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell. The ability of yeast OGG1 to excise 8-oxoG was determined when another type of damage [dihydrothymine, uracil, 8-oxoG, abasic (AP) site or various types of single-strand breaks (SSBs)] is present on the complementary strand 1, 3 or 5 bases 5′ or 3′ opposite to 8-oxoG. Base damages have little or no influence on the excision of 8-oxoG by yeast OGG1 (yOGG1) whereas an AP site has a strong inhibitory effect. Various types of SSBs, obtained using either oligonucleotides with 3′- and 5′-phosphate termini around a gap or through conversion of an AP site with either endonuclease III or human AP endonuclease 1, strongly inhibit excision of 8-oxoG by yOGG1. Therefore, this large inhibitory effect of an AP site or a SSB may minimise the probability of formation of a double-strand break in the processing of 8-oxoG within clustered damages.  相似文献   

20.
MutY homolog (MUTYH) excises adenine opposite 8-oxoguanine (8-oxoG) in DNA, thus preventing occurrence of G:C to T:A transversion. In cell-free extract prepared from the thymocytes of wild type but not MUTYH-null mice, adenine opposite 8-oxoG in DNA was excised by MUTYH, however, the generated apurinic (AP) site opposite 8-oxoG mostly remained unincised. Recombinant mouse MUTYH (mMUTYH) efficiently excised adenine opposite 8-oxoG and prevented mouse AP endonuclease (mAPEX1) from incising the generated AP site. In contrast, an AP site opposite 8-oxoG created by uracil DNA glycosylase or tetrahydrofuran opposite 8-oxoG was efficiently incised by mAPEX1 in the presence of an excess amount of mMUTYH. Mutant mMUTYH with R361A or G365D substitution, excised adenine opposite 8-oxoG as efficiently as did wild-type mMUTYH, but failed to prevent mAPEX1 from incising the generated AP site. Wild-type mMUTYH bound duplex oligonucleotides containing A:8-oxoG pair with a lower apparent Kd than that of the mutants, and prevented OGG1 from excising 8-oxoG opposite adenine or the generated AP site. The G365D mutant failed to prevent OGG1 from excising 8-oxoG opposite the generated AP site, thus indicating that the protection of its own product by mMUTYH is an intrinsic function which depends on the C-terminal domain of mMUTYH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号