首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF—kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5’-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells.  相似文献   

2.
The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD) and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT) scans. Players from three college football teams were enrolled (total of 67 volunteers). None of the players experienced a concussion. Blood samples were collected before and after games (n = 57); the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games). A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10). Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes.  相似文献   

3.
血脑屏障的破坏是引起脑缺血损伤及继发水肿、出血、炎症的微观原因。缺血缺氧和再灌注过程产生的自由基,以及后续基质金属蛋白酶的激活,是破坏血脑屏障结构和功能的重要分子机制。因而,在脑缺血早期及时抑制自由基产生并清除自由基,抑制基质金属蛋白酶的活性,是降低脑缺血血脑屏障损伤及其并发症的关键环节。本文将从血脑屏障损伤的角度,概述自由基与基质金属蛋白酶在脑缺血损伤过程中的作用。  相似文献   

4.

Objective

Effect of fingolimod in multiple sclerosis (MS) is thought to involve the prevention of lymphocyte egress from lymphoid tissues, thereby reducing autoaggressive lymphocyte infiltration into the central nervous system across blood-brain barrier (BBB). However, brain microvascular endothelial cells (BMECs) represent a possible additional target for fingolimod in MS patients by directly repairing the function of BBB, as S1P receptors are also expressed by BMECs. In this study, we evaluated the effects of fingolimod on BMECs and clarified whether fingolimod-phosphate restores the BBB function after exposure to MS sera.

Methods

Changes in tight junction proteins, adhesion molecules and transendothelial electrical resistance (TEER) in BMECs were evaluated following incubation in conditioned medium with or without fingolimod/fingolimod-phosphate. In addition, the effects of sera derived from MS patients, including those in the relapse phase of relapse-remitting (RR) MS, stable phase of RRMS and secondary progressive MS (SPMS), on the function of BBB in the presence of fingolimod-phosphate were assessed.

Results

Incubation with fingolimod-phosphate increased the claudin-5 protein levels and TEER values in BMECs, although it did not change the amount of occludin, ICAM-1 or MelCAM proteins. Pretreatment with fingolimod-phosphate restored the changes in the claudin-5 and VCAM-1 protein/mRNA levels and TEER values in BMECs after exposure to MS sera.

Conclusions

Pretreatment with fingolimod-phosphate prevents BBB disruption caused by both RRMS and SPMS sera via the upregulation of claudin-5 and downregulation of VCAM-1 in BMECs, suggesting that fingolimod-phosphate is capable of directly modifying the BBB. BMECs represent a possible therapeutic target for fingolimod in MS patients.  相似文献   

5.
We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.  相似文献   

6.
The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted 111In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM) 8401 cells was developed in this study. 111In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox) were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of 111In-AP-1 Lipo-Dox or 111In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05). Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of 111In-AP-1 Lipo-Dox with sonication. The 111In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.  相似文献   

7.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Previous studies have demonstrated that Cryptococcus binding and invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for transmigration across the blood-brain barrier. However, the molecular mechanism involved in the cryptococcal blood-brain barrier traversal is poorly understood. In this study we examined the signaling events in HBMEC during interaction with C. neoformans. Analysis with inhibitors revealed that cryptococcal association, invasion, and transmigration require host actin cytoskeleton rearrangement. Rho pulldown assays revealed that Cryptococcus induces activation of three members of RhoGTPases, e.g. RhoA, Rac1, and Cdc42, and their activations are required for cryptococcal transmigration across the HBMEC monolayer. Western blot analysis showed that Cryptococcus also induces phosphorylation of focal adhesion kinase (FAK), ezrin, and protein kinase C α (PKCα), all of which are involved in the rearrangement of host actin cytoskeleton. Down-regulation of FAK, ezrin, or PKCα by shRNA knockdown, dominant-negative transfection, or inhibitors significantly reduces cryptococcal ability to traverse the HBMEC monolayer, indicating their positive role in cryptococcal transmigration. In addition, activation of RhoGTPases is the upstream event for phosphorylation of FAK, ezrin, and PKCα during C. neoformans-HBMEC interaction. Taken together, our findings demonstrate that C. neoformans activates RhoGTPases and subsequently FAK, ezrin, and PKCα to promote their traversal across the HBMEC monolayer, which is the critical step for cryptococcal brain infection and development of meningitis.  相似文献   

8.
《Autophagy》2013,9(3):257-258
Plant cells frequently encounter oxidative stress, leading to oxidative damage and inactivation of proteins. We have recently demonstrated that oxidative stress induces autophagy in Arabidopsis seedlings in an AtATG18a-dependent manner and that RNAi-AtATG18a transgenic lines, which are defective in autophagosome formation, are hypersensitive to reactive oxygen species. Analysis of protein oxidation indicated that oxidized proteins are degraded in the vacuole after uptake by autophagy, and this degradation is impaired in RNAi-AtATG18a lines. Our results also suggest that in the absence of a functional autophagy pathway, plants are under increased oxidative stress, even under normal growth conditions.

Addendum to:

Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis

Y. Xiong, A.L. Contento, N.Q. Phan and D.C. Bassham

Plant Physiol 2007; 143:291-9  相似文献   

9.

Background

Hypoglycemia-induced brain edema is a severe clinical event that often results in death. The mechanisms by which hypoglycemia induces brain edema are unclear.

Methods

In a hypoglycemic injury model established in adult rats, brain edema was verified by measuring brain water content and visualizing water accumulation using hematoxylin and eosin staining. Temporal expression of aquaporin 4 (AQP4) and the integrity of the blood-brain barrier (BBB) were evaluated. We assessed the distribution and expression of AQP4 following glucose deprivation in astrocyte cultures.

Results

Brain edema was induced immediately after severe hypoglycemia but continued to progress even after recovery from hypoglycemia. Upregulation of AQP4 expression and moderate breakdown of the BBB were observed 24 h after recovery. In vitro, significant redistribution of AQP4 to the plasma membrane was induced following 6 h glucose deprivation.

Conclusion

Hypoglycemia-induced brain edema is caused by cytotoxic and vasogenic factors. Changes in AQP4 location and expression may play a protective role in edema resolution.  相似文献   

10.
The term blood-brain barrier (BBB) relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5) appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500). Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone. Understanding the mechanisms causing functional endothelial alterations and endothelial damage is likely to provide novel protective targets in stroke.  相似文献   

11.

Background

Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke.

Methods

Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point.

Results

Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05).

Conclusion

Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke.  相似文献   

12.
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Human infection occurs after the ingestion, inhalation, or cutaneous inoculation of B. anthracis spores. The subsequent progression of the disease is largely mediated by two native virulence plasmids, pXO1 and pXO2, and is characterized by septicemia, toxemia, and meningitis. In order to produce meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB) that is composed of a specialized layer of brain microvascular endothelial cells (BMEC). We have recently shown that B. anthracis Sterne is capable of penetrating the BBB in vitro and in vivo, establishing the classic signs of meningitis; however, the molecular mechanisms underlying the central nervous system (CNS) tropism are not known. Here, we show that attachment to and invasion of human BMEC by B. anthracis Sterne is mediated by the pXO1 plasmid and an encoded envelope factor, BslA. The results of studies using complementation analysis, recombinant BslA protein, and heterologous expression demonstrate that BslA is both necessary and sufficient to promote adherence to brain endothelium. Furthermore, mice injected with the BslA-deficient strain exhibited a significant decrease in the frequency of brain infection compared to mice injected with the parental strain. In addition, BslA contributed to BBB breakdown by disrupting tight junction protein ZO-1. Our results identify the pXO1-encoded BslA adhesin as a critical mediator of CNS entry and offer new insights into the pathogenesis of anthrax meningitis.Bacillus anthracis, the etiologic agent of anthrax, is a gram-positive spore-forming bacterium that is commonly found in soil (29). The bacterium can infect animals and humans by ingestion, inhalation, or cutaneous inoculation of B. anthracis spores (8). Spores are taken up by resident macrophages that migrate to the lymph nodes (15). Here, the spores germinate into vegetative bacteria, multiply, and then disseminate throughout the host, causing septicemia and toxemia (8). Systemic disease can be complicated by the onset of a fulminant and rapidly fatal hemorrhagic meningitis and meningoencephalitis (27). Anthrax meningitis is associated with a high mortality rate despite intensive antibiotic therapy (24). Biopsy studies after an outbreak of inhalational anthrax and experimental studies of inhalational infection in rhesus monkeys demonstrated the presence of bacilli in the central nervous system (CNS) and pathologies consistent with suppurative and hemorrhagic meningitis in the majority of cases (1, 12). The intentional release of B. anthracis spores (19) during the 2001 bioterrorism event resulted in a case of meningitis (19), necessitating a need for a better understanding of the pathogenesis of anthrax meningitis and CNS infection.To cause meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB). The majority of the BBB is anatomically represented by the cerebral microvascular endothelium; brain microvascular endothelial cells (BMEC) are joined by tight junctions and display a paucity of pinocytosis, thereby effectively limiting the passage of substances and maintaining the CNS microenvironment (4, 5). Despite its highly restrictive nature, certain bacterial pathogens are still able to penetrate the BBB and gain entry into the CNS. The presence of bacilli in the brains of patients (1, 24) and in experimental models of anthrax infection (42, 44) suggests that vegetative B. anthracis cells are able to cross the BBB to initiate meningeal inflammation and the classic pathology associated with meningitis.B. anthracis harbors two large virulence plasmids, pXO1 and pXO2 (8), which are required for full virulence, as strains lacking these plasmids are attenuated in animal models of infection (29). B. anthracis Sterne (pXO1+ pXO2) has been utilized as a vaccine strain (41) but is still widely used in both in vitro and in vivo studies of anthrax infection since it causes lethal disease in mouse models of infection (46). Despite the crucial roles of pXO1 and pXO2 in anthrax disease pathogenesis, very few plasmid-encoded factors have been characterized. The best described are the antiphagocytic polyglutamyl capsule, encoded by biosynthetic enzymes on pXO2, and the anthrax toxin complex comprised of protective antigen, lethal factor (LF), and edema factor (EF), encoded by pXO1 (8, 29). Sequence analysis of the pXO1 plasmid revealed that the majority of plasmid-encoded factors, ∼70%, were of unknown function (31). More recently, in silico analysis identified novel pXO1-encoded proteins with immunogenic potential and relevance for pathogenesis. These included factors with putative adherent and invasive properties (2). Interestingly, two of the immunoreactive proteins were predicted surface layer (S-layer) proteins (2), one of which, B. anthracis S-layer protein A (BslA, pXO1-90), has recently been described and shown to mediate adherence of the vegetative form to host cells (20).Using in vitro and in vivo model systems, we have recently shown that B. anthracis Sterne adheres to and invades brain endothelium (44). This interaction was partially dependent on the pXO1-encoded anthrax toxins; however, the molecular mechanisms that contribute to B. anthracis penetration of the BBB are currently unknown. In this study, we investigate the role of pXO1 in B. anthracis Sterne''s interaction with brain endothelium and identify the encoded BslA adhesin as a critical mediator for BBB attachment and penetration during the pathogenesis of anthrax meningitis.  相似文献   

13.
Exposure of pulmonary artery endothelial cells (PAECs) to hyperoxia results in a compromise in endothelial monolayer integrity, an increase in caspase-3 activity, and nuclear translocation of apoptosis-inducing factor (AIF), a marker of caspase-independent apoptosis. In an endeavor to identify proteins involved in hyperoxic endothelial injury, we found that the protein expression of heat-shock protein 70 (Hsp70) was increased in hyperoxic PAECs. The hyperoxia-induced Hsp70 protein expression is from hspA1B gene. Neither inhibition nor overexpression of Hsp70 affected the first phase barrier disruption of endothelial monolayer. Nevertheless, inhibition of Hsp70 by using the Hsp70 inhibitor KNK437 or knock down Hsp70 using siRNA exaggerated and overexpression of Hsp70 prevented the second phase disruption of lung endothelial integrity. Moreover, inhibition of Hsp70 exacerbated and overexpression of Hsp70 prevented hyperoxia-induced apoptosis, caspase-3 activation, and increase in nuclear AIF protein level in PAECs. Furthermore, we found that Hsp70 interacted with AIF in the cytosol in hyperoxic PAECs. Inhibition of Hsp70/AIF association by KNK437 correlated with increased nuclear AIF level and apoptosis in KNK437-treated PAECs. Finally, the ROS scavenger NAC prevented the hyperoxia-induced increase in Hsp70 expression and reduced the interaction of Hsp70 with AIF in hyperoxic PAECs. Together, these data indicate that increased expression of Hsp70 plays a protective role against hyperoxia-induced lung endothelial barrier disruption through caspase-dependent and AIF-dependent apoptotic pathways. Association of Hsp70 with AIF prevents AIF nuclear translocation, contributing to the protective effect of Hsp70 on hyperoxia-induced endothelial apoptosis. The hyperoxia-induced increase in Hsp70 expression and Hsp70/AIF interaction is contributed to ROS formation.  相似文献   

14.
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.  相似文献   

15.
16.
In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain.  相似文献   

17.
This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.  相似文献   

18.
Increased vascular permeability leading to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is central to the pathogenesis of heatstroke. Protease-activated receptor 1 (PAR1), the receptor for thrombin, plays a key role in disruption of endothelial barrier function in response to extracellular stimuli. However, the role of PAR1 in heat stress-induced endothelial hyper-permeability is unknown. In this study, we measured PAR1 protein expression in heat-stressed human umbilical venous endothelial cells (HUVECs), investigated the influences of PAR1 on endothelial permeability, F-actin rearrangement, and moesin phosphorylation by inhibiting PAR1 with its siRNA, neutralizing antibody (anti-PAR1), specific inhibitor(RWJ56110), and Xuebijing injection (XBJ), a traditional Chinese medicine used for sepsis treatment, and evaluated the role of PAR1 in heatstroke-related ALI/ARDS in mice by suppressing PAR1 with RWJ56110, anti-PAR1and XBJ. We found that heat stress induced PAR1 protein expression 2h after heat stress in endothelial cells, caused the release of endothelial matrix metalloprotease 1, an activator of PAR1, after 60 or 120 min of heat stimulation, as well as promoted endothelial hyper-permeability and F-actin rearrangement, which were inhibited by suppressing PAR1 with RWJ56110, anti-PAR1 and siRNA. PAR1 mediated moesin phosphorylation, which caused F-actin rearrangement and disruption of endothelial barrier function. To corroborate findings from in vitro experiments, we found that RWJ56110 and the anti-PAR1 significantly decreased lung edema, pulmonary microvascular permeability, protein exudation, and leukocytes infiltrations in heatstroke mice. Additionally, XBJ was found to suppress PAR1-moesin signal pathway and confer protective effects on maintaining endothelial barrier function both in vitro and in vivo heat-stressed model, similar to those observed above with the inhibition of PAR1. These results suggest that PAR1 is a potential therapeutic target in heatstroke.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号