首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
突触囊泡在钙离子(Ca2+)触发下释放神经递质普遍存在着同步和异步两种形式.突触囊泡膜蛋白(synaptotagmin 2,Syt-2)已被证实是Calyx of Held突触囊泡同步释放的Ca2+传感蛋白,而相关的异步释放Ca2+传感蛋白还有待于探索.虽然锶离子(Sr2+)因其物理和化学性质都接近Ca2+,且能触发更多的囊泡异步释放成分而成为研究异步释放机制的常用工具,但有关Sr2+触发异步释放的机制存在着争议.本文在胞外以Sr2+替换Ca2+的条件下,通过对野生型(WT)和Syt-2敲除型(Z2B-/-)小鼠Calyx突触囊泡自发和诱发释放的电生理特性分析,发现Syt-2是介导Sr2+诱发的突触囊泡快速释放的传感蛋白,但不是介导Sr2+相关神经递质异步释放和自发释放的传感蛋白;而未知的触发囊泡异步释放的传感蛋白相比Syt-2对Sr2+具有更高的亲和力,同时也介导突触囊泡的自发释放.这一研究为探索并最终发现触发囊泡异步释放的未知传感蛋白提供了新的线索.  相似文献   

2.
3.
Several observations have been reported in the last years indicating that ceramide may activate the mitochondrial route of apoptosis. We show here that on addition of either C2- or C16-ceramide to mitochondria isolated from rat heart and suspended in a saline medium, release of cytochrome c and apoptosis-inducing factor (AIF) from the intermembrane space takes place. The release process is Ca2+ -independent and is not inhibited by Cyclosporin A (CsA). For the protein release process to occur, the presence of an oxidizable substrate is required. When mitochondria are suspended in sucrose instead of potassium medium, only short chain C2-ceramide causes cytochrome c release through a Ca2+ -dependent and CsA sensitive mitochondrial permeability transition (MPT) mechanism. The latter effect appears to be related to the membrane potential dissipating ability exhibited by short chain C2-ceramide.  相似文献   

4.
In the heart, excitation-contraction (E-C) coupling is mediated by Ca2+ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the Ca2+ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich Ca2+ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202–231). Second, in vitro binding assays were conducted to examine the Ca2+ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped Ca2+ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such Ca2+ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of Ca2+ into SR at intermediate Ca2+ concentrations.  相似文献   

5.
Although the well-known neurotoxic agent bilirubin can induce alterations in neuronal signaling, direct effects on neurotransmitter release have been difficult to demonstrate. In the present study we have used permeabilized nerve terminals (synaptosomes) from rat brain prelabeled with [3H]norepinephrine to examine the effects of bilirubin on transmitter release. Rat cerebrocortical synaptosomes were permeabilized with streptolysin-O (2 U/ml) in the absence or presence of bilirubin (10 M–320 M) and Ca2+ (100 M), and the amount of radiolabeled transmitter released during 5 min to the medium was analysed. Low levels of bilirubin decreased Ca2+-evoked release in a dose-dependent manner, with half-maximal effect at approx 25 M bilirubin. Higher levels of bilirubin (100–320 M) increased [3H]norepinephrine efflux in the absence of Ca2+, suggesting that high bilirubin levels induced leakage of transmitter from vesicles. The nontoxic precursor biliverdin had no effect on Ca2+-dependent exocytosis. Our data indicate that bilirubin directly inhibits both exocytotic release and vesicular storage of brain catecholamines.  相似文献   

6.
7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

8.
Storchak  L.  Tarasenko  A.  Linetska  M.  Pozdnyakova  N.  Himmelreich  N. 《Neurophysiology》2002,34(5):321-325
The main inhibitory neurotransmitter GABA in the mammalian brain is distributed in the nerve terminals between two pools, vesicular (synaptic vesicles) and cytosolic. GABA is released from these pools by different mechanisms; there are calcium-activated exocytotic release and calcium-independent sodium-dependent release from the cytosolic pool (resulting from the membrane GABA transporter reversal). We investigated the influence of temperature on [3H]GABA release from rat brain synaptosomes, which was induced by stimulation of both these processes. In addition, we used -latrotoxin as a stimulant of [3H]GABA release. Synaptosomes from the rat brain were used in the experiments. 4-Aminopyridine (4-AP) and high [KCl] were applied to stimulate calcium-activated and calcium-independent [3H]GABA release, respectively. 4-AP-evoked [3H]GABA release was of the same intensity at 37 and 25°C (10.1 ± 1.2 and 10.1 ± 0.8% of total [3H]GABA incorporated into the synaptosomes, respectively). The effect of 4-AP on the 45Ca2+ influx into synaptosomes was also temperature-independent: 0.775 ± 0.075 and 0.725 ± 0.100 nmol/min/mg of protein at 37 and 25°C, respectively. A drop in the effect of 4-AP was observed only at 15°C. When synaptosomes were depolarized with 50 mM KCl, a temperature decrease from 37°C to 25°C resulted in a twofold drop in the [3H]GABA release, from 20.5 ± 1.4 to 10.3 ± 0.7%; at 15°C [3H]GABA release dropped to less than one-third of the norm (6.0 ± 0.5%). -Latrotoxin-stimulated [3H]GABA release was diminished from 32.5 ± 2.5 at 37°C to 17.2 ± 1.3 at 25°C and 5.9 ± 0.4% at 15°C and was not affected by the presence or absence of calcium in the medium. It seems likely that the observed effect of temperature can be interpreted as based on the temperature dependence of the -latrotoxin insertion into the membrane. It is suggested that the pattern of the temperature sensitivity of GABA release from the synaptosomes can be used as a criterion for identification of the mode of neurotransmitter release.  相似文献   

9.
10.
Two mutants of Paramecium tetraurelia with greatly reduced Ca2+-dependent K+ currents have been isolated and genetically analyzed. These mutants, designated pantophobiac, give much stronger behavioral responses to all stimuli than do wild-type cells. Under voltage clamp, the Ca2+-dependent K+ current is almost completely eliminated in these mutants, whereas the Ca2+ current is normal. The two mutants, pntA and pntB, are recessive and unlinked to each other. pntA is not allelic to several other ion-channel mutants of P. tetraurelia. The microinjection of a high-speed supernatant fraction of wild-type cytoplasm into either pantophobiac mutant caused a temporary restoration to the wild-type phenotype.  相似文献   

11.
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.  相似文献   

12.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

13.
Phosphoenolpyruvate carboxylase (PEPC) [EC 4.1.1.31 [EC] ] of plantsundergoes regulatory phosphorylation in response to light ornutritional conditions. However, the nature of protein kinase(s)for this phosphorylation has not yet been fully elucidated.We separated a Ca2+-requiring protein kinase from Ca2+-independentone, both of which can phosphorylate maize leaf PEPC and characterizedthe former kinase after partial purification. Several linesof evidence indicated that the kinase is one of the characteristicCa2+-dependent but calmodulin-independent protein kinase (CDPK).Although the Mr, of native CDPK was estimated to be about 100kDa by gel permeation chromatography, in situ phosphorylationassay of CDPK in a SDS-polyacrylamide gel revealed that thesubunit has an Mr of about 50 kDa suggesting dimer formationor association with other protein(s). Several kinetic parameterswere also obtained using PEPC as a substrate. Although the CDPKshowed an ability of regulatory phosphorylation (Ser-15 in maizePEPC), no significant desensitization to feedback inhibitor,malate, could be observed presumably due to low extent of phosphorylation.The kinase was not specific to PEPC but phosphorylated a varietyof synthetic peptides. The possible physiological role of thiskinase was discussed. 1Present address: NEOS Central Research Laboratory, 1-1 Ohike-machi,Kosei-cho, Shiga, 520-3213 Japan. 2Present address: Chugai Pharmaceutical Co., Ltd., 1-135 Komakado,Gotemba, 412-0038 Japan. 4N.O. and N.Y. contributed equally to this work.  相似文献   

14.
《Biophysical journal》2020,118(4):798-812
N-Methyl-d-aspartate (NMDA) receptors are Ca2+-permeable channels gated by glutamate and glycine that are essential for central excitatory transmission. Ca2+-dependent inactivation (CDI) is a regulatory feedback mechanism that reduces GluN2A-type NMDA receptor responses in an activity-dependent manner. Although CDI is mediated by calmodulin binding to the constitutive GluN1 subunit, prior studies suggest that GluN2B-type receptors are insensitive to CDI. We examined the mechanism of CDI subtype dependence using electrophysiological recordings of recombinant NMDA receptors expressed in HEK-293 cells. In physiological external Ca2+, we observed robust CDI of whole-cell GluN2A currents (0.42 ± 0.05) but no CDI in GluN2B currents (0.08 ± 0.07). In contrast, when Ca2+ was supplied intracellularly, robust CDI occurred for both GluN2A and GluN2B currents (0.75 ± 0.03 and 0.67 ± 0.02, respectively). To examine how the source of Ca2+ affects CDI, we recorded one-channel Na+ currents to quantify the receptor gating mechanism while simultaneously monitoring ionomycin-induced intracellular Ca2+ elevations with fluorometry. We found that CDI of both GluN2A and GluN2B receptors reflects receptor accumulation in long-lived closed (desensitized) states, suggesting that the observed subtype-dependent differences in macroscopic CDI reflect intrinsic differences in equilibrium open probabilities (Po). We tested this hypothesis by measuring substantial macroscopic CDI, in physiologic conditions, for high Po GluN2B receptors (GluN1A652Y/GluN2B). Together, these results show that Ca2+ flux produces activity-dependent inactivation for both GluN2A and GluN2B receptors and that the extent of CDI varies with channel Po. These results are consistent with CDI as an autoinhibitory feedback mechanism against excessive Ca2+ load during high Po activation.  相似文献   

15.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

16.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1–0.2 μM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20–30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5–10 μM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10–90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 μM · s−1 and in Purkinje neurons at high flux up to 1,400 μM · s−1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

17.
The mechanism whereby events in and around the catalytic site/head of Ca2+-ATPase effect Ca2+ release to the lumen from the transmembrane helices remains elusive. We developed a method to determine deoccluded bound Ca2+ by taking advantage of its rapid occlusion upon formation of E1PCa2 and of stabilization afforded by a high concentration of Ca2+. The assay is applicable to minute amounts of Ca2+-ATPase expressed in COS-1 cells. It was validated by measuring the Ca2+ binding properties of unphosphorylated Ca2+-ATPase. The method was then applied to the isomerization of the phosphorylated intermediate associated with the Ca2+ release process E1PCa2E2PCa2E2P + 2Ca2+. In the wild type, Ca2+ release occurs concomitantly with EP isomerization fitting with rate-limiting isomerization (E1PCa2E2PCa2) followed by very rapid Ca2+ release. In contrast, with alanine mutants of Leu119 and Tyr122 on the cytoplasmic part of the second transmembrane helix (M2) and Ile179 on the A domain, Ca2+ release in 10 μm Ca2+ lags EP isomerization, indicating the presence of a transient E2P state with bound Ca2+. The results suggest that these residues function in Ca2+ affinity reduction in E2P, likely via a structural rearrangement at the cytoplasmic part of M2 and a resulting association with the A and P domains, therefore leading to Ca2+ release.  相似文献   

18.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

19.
Cytosolic Ca2+ waves occur in a number of cell types either spontaneously or after stimulation by hormones, neurotransmitters, or treatments promoting Ca2+ influx into the cells. These waves can be broadly classified into two types. Waves of type 1, observed in cardiac myocytes or Xenopus oocytes, correspond to the propagation of sharp bands of Ca2+ throughout the cell at a rate that is high enough to permit the simultaneous propagation of several fronts in a given cells. Waves of type 2, observed in hepatocytes, endothelial cells, or various kinds of eggs, correspond to the progressive elevation of cytosolic Ca2+ throughout the cell, followed by its quasi-homogeneous return down to basal levels. Here we analyze the propagation of these different types of intracellular Ca2+ waves in a model based on Ca(2+)-induced Ca2+ release (CICR). The model accounts for transient or sustained waves of type 1 or 2, depending on the size of the cell and on the values of the kinetic parameters that measure Ca2+ exchange between the cytosol, the extracellular medium, and intracellular stores. Two versions of the model based on CICR are considered. The first version involves two distinct Ca2+ pools sensitive to inositol 1,4,5-trisphosphate (IP3) and Ca2+, respectively, whereas the second version involves a single pool sensitive both to Ca2+ and IP3 behaving as co-agonists for Ca2+ release. Intracellular Ca2+ waves occur in the two versions of the model based on CICR, but fail to propagate in the one-pool model at subthreshold levels of IP3. For waves of type 1, we investigate the effect of the spatial distribution of Ca(2+)-sensitive Ca2+ stores within the cytosol, and show that the wave fails to propagate when the distance between the stores exceeds a critical value on the order of a few microns. We also determine how the period and velocity of the waves are affected by changes in parameters measuring stimulation, Ca2+ influx into the cell, or Ca2+ pumping into the stores. For waves of type 2, the numerical analysis indicates that the best qualitative agreement with experimental observations is obtained for phase waves. Finally, conditions are obtained for the occurrence of "echo" waves that are sometimes observed in the experiments.  相似文献   

20.
Properties of a Ca2+-activated K+ channel in a reconstituted system   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号