首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The conformational stability and activity of Candida antarctica lipase B (CALB) in the polar and nonpolar organic solvents were investigated by molecular dynamics and quantum mechanics/molecular mechanics simulations. The conformation change of CALB in the polar and nonpolar solvents was examined in two aspects: the overall conformation change of CALB and the conformation change of the active site. The simulation results show that the overall conformation of CALB is stable in the organic solvents. In the nonpolar solvents, the conformation of the active site keeps stable, whereas in the polar solvents, the solvent molecules reach into the active site and interact intensively with the active site. This interaction destroys the hydrogen bonding between Ser105 and His224. In the solvents, the activation energy of CALB and that of the active site region were further simulated by quantum mechanics/molecular mechanics simulation. The results indicate that the conformation change in the region of active sites is the main factor that influences the activity of CALB.  相似文献   

2.
Acidic phospholipids increase the affinity of the plasma membrane Ca2+-ATPase pump for Ca2+. They interact with the C-terminal region of the pump and with a domain in the loop connecting transmembrane domains 2 and 3 (AL region) next to site A of alternative splicing. The contribution of the two phospholipid-binding sites and the possible interference of splicing inserts at site A with the regulation of the ATPase activity of isoform 2 of the pump by phospholipids have been analyzed. The activity of the full-length z/b variant (no insert at site A), the w/b (with insert at site A), and the w/a variant, containing both the 45-amino acid A-site insert and a C-site insert that truncates the pump in the calmodulin binding domain, has been analyzed in microsomal membranes of overexpressing CHO cells. The A-site insertion did not modify the phospholipid sensitivity of the pump, but the doubly inserted w/a variant became insensitive to acidic phospholipids, even if containing the intact AL phospholipid binding domain. Pump mutants in which 12 amino acids had been deleted, or single lysine mutations introduced, in the AL region were studied by monitoring agonist-induced Ca2+ transients in overexpressing CHO cells. The 12-residue deletion completely abolished the ATPase activity of the w/a variant but only reduced that of the z/b variant, which was also affected by the single lysine substitutions in the same domain. A structural interpretation of the interplay of the pump with phospholipids, and of the mechanism of their activation, is proposed on the basis of molecular modeling studies.  相似文献   

3.
The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号