首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson’s disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes.  相似文献   

2.
线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。  相似文献   

3.
Eukaryotes employ elaborate mitochondrial quality control to maintain the function of the power-generating organelle. Mitochondrial quality control is particularly important for the maintenance of neural and muscular tissues. Mitophagy is specialized version of the autophagy pathway. Mitophagy delivers damaged mitochondria to lysosomes for degradation. Recently, a series of elegant studies have demonstrated that two Parkinson's disease-associated genes PINK1 and parkin are involved in the maintenance of healthy mitochondria as mitophagy. Parkin in co-operation with PINK1 specifically recognizes damaged mitochondria with reduced mitochondrial membrane potential (Δψm), rapidly isolates them from the mitochondrial network and eliminates them through the ubiquitin–proteasome and autophagy pathways. Here we introduce and review recent studies that contribute to understanding the molecular mechanisms of mitophagy such as PINK1 and Parkin-mediated mitochondrial regulation. We also discuss how defects in the PINK1–Parkin pathway may cause neurodegeneration in Parkinson's disease.  相似文献   

4.
Atsushi Tanaka 《FEBS letters》2010,584(7):1386-19640
Cellular homeostasis is linked tightly to mitochondrial functions. Some damage to mitochondrial proteins and nucleic acids can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. Mitochondrial dysfunction is one of the key aspects of the pathobiology of neurodegenerative disease. Parkin, an E3 ligase located in the cytosol and originally discovered as mutated in monogenic forms of Parkinson’s disease (PD), was found recently to translocate specifically to uncoupled mitochondria and to induce their autophagy.  相似文献   

5.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

6.
The study of rare, inherited mutations underlying familial forms of Parkinson's disease has provided insight into the molecular mechanisms of disease pathogenesis. Mutations in these genes have been functionally linked to several key molecular pathways implicated in other neurodegenerative disorders, including mitochondrial dysfunction, protein accumulation and the autophagic-lysosomal pathway. In particular, the mitochondrial kinase PINK1 and the cytosolic E3 ubiquitin ligase parkin act in a common pathway to regulate mitochondrial function. In this review we discuss the recent evidence suggesting that the PINK1/parkin pathway also plays a critical role in the autophagic removal of damaged mitochondria-mitophagy. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

7.
In this study, we develop a simple assay to identify mitophagy inducers on the basis of the use of fluorescently tagged mitochondria that undergo a colour change on lysosomal delivery. Using this assay, we identify iron chelators as a family of compounds that generate a strong mitophagy response. Iron chelation‐induced mitophagy requires that cells undergo glycolysis, but does not require PINK1 stabilization or Parkin activation, and occurs in primary human fibroblasts as well as those isolated from a Parkinson's patient with Parkin mutations. Thus, we have identified and characterized a mitophagy pathway, the induction of which could prove beneficial as a potential therapy for several neurodegenerative diseases in which mitochondrial clearance is advantageous.  相似文献   

8.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

9.
Mutations in the PINK1 and PARK2/PARKIN genes are associated with hereditary early onset Parkinson disease (PD), and in cell lines the corresponding gene products play a critical role in mitophagic clearance of damaged mitochondria. In neurons, however, where the extraordinary cellular shapes pose particular challenges for maintaining healthy mitochondria, the pathways of mitophagy are less well understood. Both the location at which mitophagy occurs and the involvement of PINK1 and PARK2 have been controversial. Here we review our recent study where we found that selective damage to a subset of axonal mitochondria causes them to be engulfed within autophagosomes and cleared locally within the axon without the need for transport back to the soma. We also found this process to be completely dependent on neuronal PINK1 and PARK2.  相似文献   

10.
《Molecular cell》2023,83(10):1693-1709.e9
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

11.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson''s disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.  相似文献   

12.
目的:研究红景天苷(Salidroside,Sal)对在MPP+诱导SH-SY5Y细胞线粒体形态和功能的影响及其机制。方法:采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,MTT)检测细胞活性,Mito Tracker Red CMXRos进行线粒体染色,四甲基罗丹明乙酯(Tetramethylrhodamine ethyl ester,TMRE)检测线粒体膜电位,Western blot检测PINK1和Parkin蛋白表达水平。结果:单纯Sal处理24 h对细胞活性、线粒体形态和MMP无影响(P0.05)。MPP+(500μM)处理SH-SY5Y细胞24 h后,与正常组比较,细胞活性、MMP水平均降低,线粒体长度减短(P0.01),并发生碎片化。Sal(25μM)预处理24 h可以显著抑制MPP+诱导的细胞活性降低(P0.01),并维持线粒体长度和增加MMP水平(P0.01)。而且,Sal(25μM)预处理24 h可以显著恢复MPP+诱导的PINK1和Parkin蛋白表达水平下降(P0.01)。结论:体外实验证实Sal可以保护MPP+诱导的SH-SY5Y细胞活性降低、线粒体形态和功能异常,而PINK1-Parkin通路可能是其机制之一,为进一步临床开发Sal治疗PD的新药提供实验依据。  相似文献   

13.
The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease.  相似文献   

14.
Few approaches have been conducted in the treatment of renal cell carcinoma (RCC) after nephrectomy, resulting in a high mortality rate in urological tumours. Mitophagy is a mechanism of mitochondrial quality control that enables selective degradation of damaged and unnecessary mitochondria. Previous studies have found that glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is associated with the progression of tumours such as lung cancer, colorectal cancer and oropharyngeal cancer, but the potential mechanism in RCC is still unclear. In this study, microarrays from tumour databases were analysed. The expression of GPD1L was confirmed by RT–qPCR and western blotting. The effect and mechanism of GPD1L were explored using cell counting kit 8, wound healing, invasion, flow cytometry and mitophagy-related experiments. The role of GPD1L was further confirmed in vivo. The results showed that GPD1L expression was downregulated and positively correlated with prognosis in RCC. Functional experiments revealed that GPD1L prevented proliferation, migration and invasion while promoting apoptosis and mitochondrial injury in vitro. The mechanistic results indicated that GPD1L interacted with PINK1, promoting PINK1/Parkin-mediated mitophagy. However, inhibition of PINK1 reversed GPD1L-mediated mitochondrial injury and mitophagy. Moreover, GPD1L prevented tumour growth and promoted mitophagy by activating the PINK1/Parkin pathway in vivo. Our study shows that GPD1L has a positive correlation with the prognosis of RCC. The potential mechanism involves interacting with PINK1 and regulating the PINK1/Parkin pathway. In conclusion, these results reveal that GPD1L can act as a biomarker and target for RCC diagnosis and therapy.  相似文献   

15.
Modern pharmacological studies have demonstrated that Dendrobium nobile Lindl. Alkaloids (DNLA), the main active ingredients of Dendrobium nobile, is valuable as an anti-aging and neuroprotective herbal medicine. The present study was designed to determine whether DNLA confers protective function over neurotoxicant manganese (Mn)-induced cytotoxicity and the mechanism involved. Our results showed that pretreatment of PC12 cells with DNLA alleviated cell toxicity induced by Mn and improved mitochondrial respiratory capacity and oxidative status. Mn treatment increased apoptotic cell death along with a marked increase in the protein expression of Bax and a decrease in the expression of Bcl-2 protein, all of which were noticeably reversed by DNLA. Furthermore, DNLA significantly abolished the decrease in protein levels of both PINK1 and Parkin, and mitigated the increased expression of autophagy marker LC3-II and accumulation of p62 caused by Mn. These results demonstrate that DNLA inhibits Mn induced cytotoxicity, which may be mediated through modulating PINK1/Parkin-mediated autophagic flux and improving mitochondrial function.  相似文献   

16.
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson’s disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.

Structured summary

MINT-7557195: PINK1 (uniprotkb:Q9BXM7) physically interacts (MI:0915) with LC3 (uniprotkb:Q9GZQ8) by anti tag coimmunoprecipitation (MI:0007)MINT-7557109: LC3 (uniprotkb:Q9GZQ8) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557121: tom20 (uniprotkb:Q15388) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557138: parkin (uniprotkb:O60260), PINK1 (uniprotkb:Q9BXM7) and tom20 (uniprotkb:Q15388) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

17.
18.
The generation of vesicles is a constitutive attribute of mitochondria inherited from bacterial ancestors. The physiological conditions and mild oxidative stress promote oxidation and dysfunction of certain proteins and lipids within the mitochondrial membranes; these constituents are subsequently packed as small mitochondrial‐derived vesicles (MDVs) (70–150 nm in diameter) and are transported intracellularly to lysosomes and peroxisomes to be degraded. In this way, MDVs remove the damaged mitochondrial components, preserve mitochondrial structural and functional integrity and restore homeostasis. An outline of the current knowledge on MDVs seems to be necessary for understanding the potential impact of this research area in cellular (patho)physiology. The present synopsis is an attempt towards the accomplishment of this demand, highlighting also the still unclear issues related to MDVs. Here, we discuss (i) MDVs budding and generation (molecules and mechanisms), (ii) the distinct cargoes packed and transported by MDVs, (iii) the MDVs trafficking pathways and (iv) the biological role of MDVs, from quality controllers to the involvement in organellar crosstalk, mitochondrial antigen presentation and peroxisome de novo biogenesis. These complex roles uncover also mitochondria integration into the cellular environment. As the therapeutic exploitation of MDVs is currently limited, future insights into MDVs cell biology are expected to direct to novel diagnostic tools and treatments.  相似文献   

19.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.  相似文献   

20.
帕金森病(Parkinson's disease,PD)是常见的神经系统变性疾病.分子遗传学研究发现,突变的Parkin蛋白及PINK1蛋白均参与了帕金森病的致病过程,但二者之间是否存在相互作用以及是否能够相互调节仍不十分清楚.为明确生理状态下Parkin蛋白与PINK1蛋白之间的相互作用,首先运用蛋白体外结合实验(GST pull-down)技术及免疫共沉淀技术证实了Parkin与PINK1在体外及体内均可相互结合.进一步构建PINK1的不同截短型,运用GST pull-down技术验证了PINK1与Parkin相互结合的区段为PINK1的蛋白激酶结构域.免疫细胞化学实验也证实Parkin与PINK1蛋白在细胞中存在共定位.进一步运用免疫共沉淀技术证实Parkin可减少PINK1通过泛素蛋白酶体系统(ubiquitin proteasome system,UPS)的降解,从而稳定PINK1.PINK1可增加Parkin通过UPS的降解,从而减少Parkin的水平,降低其稳定性.这些结果提示,帕金森病相关蛋白Parkin与PINK1能够直接结合,二者通过泛素蛋白酶体降解系统相互调节,可能协同作用参与了帕金森病的致病过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号