首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson’s correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.  相似文献   

2.
Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB ligand (RANKL) are key regulators of osteoclastogenesis. The present study had the main aim of showing the localization of OPG and RANKL mRNA and protein in serial sections of the rat femurs and tibiae by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: (1) OPG and RANKL mRNA and protein were co-localized in the same cell types, (2) maturative/hypertrophic chondrocytes, osteoblasts, lining cells, periosteal cells and early osteocytes were stained by both IHC and ISH, (3) OPG and RANKL proteins were mainly located in Golgi areas, and the ISH reaction was especially visible in active osteoblasts, (4) immunolabeling was often concentrated into cytoplasmic vacuoles of otherwise negative proliferative chondrocytes; IHC and ISH labeling increased from proliferative to maturative/hypertrophic chondrocytes, (5) the newly laid down bone matrix, cartilage-bone interfaces, cement lines, and trabecular borders showed light OPG and RANKL immunolabeling, (6) about 70% of secondary metaphyseal bone osteocytes showed OPG and RANKL protein expression; most of them were ISH-negative, (7) osteoclasts were mostly unstained by IHC and variably labeled by ISH. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism.  相似文献   

3.
Anti-diabetic drug metformin has been shown to enhance osteoblasts differentiation and inhibit osteoclast differentiation in vitro and prevent bone loss in ovariectomized (OVX) rats. But the mechanisms through which metformin regulates osteoclastogensis are not known. Osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) are cytokines predominantly secreted by osteoblasts and play critical roles in the differentiation and function of osteoclasts. In this study, we demonstrated that metformin dose-dependently stimulated OPG and reduced RANKL mRNA and protein expression in mouse calvarial osteoblasts and osteoblastic cell line MC3T3-E1. Inhibition of AMP-activated protein kinase (AMPK) and CaM kinase kinase (CaMKK), two targets of metformin, suppressed endogenous and metformin-induced OPG secretion in osteoblasts. Moreover, supernatant of osteoblasts treated with metformin reduced formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in Raw264.7 cells. Most importantly, metformin significantly increased total body bone mineral density, prevented bone loss and decreased TRAP-positive cells in OVX rats proximal tibiae, accompanied with an increase of OPG and decrease of RANKL expression. These in vivo and in vitro studies suggest that metformin reduces RANKL and stimulates OPG expression in osteoblasts, further inhibits osteoclast differentiation and prevents bone loss in OVX rats.  相似文献   

4.
目的:探讨巴戟天及多糖提取物对成骨细胞骨保护素(OPG)/核因子κB受体活化因子配体(RANKL)基因系统表达的影响。方法:取2~3天的SD大鼠5只分离原代成骨细胞,再取8周龄SD大鼠35只随机分为七组,对照组不进行处理,三组给予10 g/L、50 g/L、100 g/L巴戟天水灌胃,其余三组分别给予10 g/L、50 g/L、100 g/L巴戟天多糖灌胃,72 h后采用采用ELISA法测定培养液中OPG、RANKL及骨钙素的含量,采用MTT法检测不同浓度巴戟天水及多糖提取物对大鼠成骨细胞增殖的影响,采用荧光定量PCR检测OPG和RANKL mRNA表达情况;通过Westernblot检测OPG和RANKL蛋白表达水平。结果:巴戟天水及多糖提取物组A570nm、ALP活性、骨钙素含量、OPG/RANKL mRNA表达量、OPG和RANKL蛋白表达阳性密度均高于对照组(P0.05);A 570 nm、ALP活性、骨钙素含量、OPG/RANKL mRNA表达量、OPG和RANKL蛋白表达阳性密度均高于同等剂量的水提取物各组(P0.05);巴戟天多糖组中随着多糖剂量的升高A 570 nm、ALP活性、骨钙素含量、OPG/RANKL mRNA表达量、OPG和RANKL蛋白表达阳性密度,差异比较有统计学意义(P0.05)。结论:巴戟天水及多糖提取物均能促进体外培养成骨细胞的增殖,提高成骨细胞活性。  相似文献   

5.
Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology.  相似文献   

6.
Although previous studies have demonstrated that hydrogen sulfide (H2S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H2S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H2S on bone metabolism, we investigated the in vitro effects of H2S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine‐stimulated human periodontal ligament cells (hPDLCs). The H2S donor, NaHS, protected hPDLCs from nicotine and LPS‐induced cytotoxicity and recovered nicotine‐ and LPS‐downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts in mouse bone marrow cells and blocked nicotine‐ and LPS‐induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M‐CSF, MMP‐9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS‐induced activation of p38, ERK, MKP‐1, PI3K, PKC, and PKC isoenzymes, and NF‐κB. The effects of H2S on nicotine‐ and LPS‐induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP‐1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H2S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine‐ and periodontopathogen‐stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases. J. Cell. Biochem. 114: 1183–1193, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Interleukin-1alpha (IL-1alpha) is one of the most potent bone-resorbing factors involved in the bone loss that is associated with inflammation. We examined the effect of the inflammatory mediator IL-1alpha on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in rat osteoblasts, and the indirect effect of IL-1alpha on the formation of osteoclast-like cells. Osteoblasts were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with or without 100 units/ml of IL-1alpha for up to 14 days. The gene and protein expression of M-CSF and OPG were estimated by determining mRNA levels using the real-time polymerase chain reaction and protein levels using Western blot analysis. PGE2 expression was determined using an enzyme-linked immunosorbent assay. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from IL-1alpha-treated osteoblasts and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression in osteoblasts increased markedly in cells cultured with IL-1alpha, whereas OPG expression decreased. The conditioned medium containing M-CSF and PGE2 produced by IL-1alpha-treated osteoblasts and soluble RANKL increased the TRAP staining of osteoclast precursors. These results suggest that IL-1alpha stimulated the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production, and a decrease in OPG production by osteoblasts.  相似文献   

8.
The β2-adrenergic receptor (β2-AR) signaling on bone cells is the major contributor in the effect of the sympathetic nervous system on bone turnover. However, it remains unclear whether receptor activator of nuclear factor κ-Β ligand (RANKL) modulation and neuropeptides expression in osteocytes are responsible for the mechanism. This study used β2-AR stimulation to investigate cell cycle and proliferation, the gene and protein expression of RANKL, and osteoprotegerin (OPG), as well as neuropeptides regulation in osteocytic MLO-Y4 cells. Clenbuterol (CLE; a β2-AR agonist) slightly promoted the growth of MLO-Y4 cells in a concentration-dependent effect but had no effect on the proliferation index. And the concentration of 10−8 M showed a significant increase in the S-phase fraction on day 3 in comparison with the control. Additionally, CLE-promoted osteoclast formation and bone resorption in osteocytic MLO-Y4 cell-RAW264.7 cell cocultures. RANKL expression level and the ratio of RANKL to OPG in MLO-Y4 cells were enhanced in CLE treatment but were rescued by blocking β2-AR signaling. However, neuropeptide Y and α-calcitonin gene-related peptide, two neurogenic markers, were inhibited in CLE treatment of MLO-Y4 cells, which was reversed by a β2-AR blocker. The results indicate that osteocytic β2-AR plays an important role in the regulation of RANKL/OPG and neuropeptides expression, and β2-AR signaling in osteocytes can be used as a new valuable target for osteoclast-related pathologic disease.  相似文献   

9.
Prolactin (PRL) enhanced bone remodeling leading to net bone loss in adult and net bone gain in young animals. Studies in PRL-exposed osteoblasts derived from adult humans revealed an increase in the expression ratio of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG), thus supporting the previous finding of PRL-induced bone loss in adults. This study thus investigated the effects of PRL on the osteoblast functions and the RANKL/OPG ratio in human fetal osteoblast (hFOB) cells which strongly expressed PRL receptors. After 48h incubation, PRL increased osteocalcin expression, but had no effect on cell proliferation. However, the alkaline phosphatase activity was decreased in a dose-response manner within 24h. The effect of PRL on alkaline phosphatase was abolished by LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor. PRL also decreased the RANKL/OPG ratio by downregulating RANKL and upregulating OPG expression, implicating a reduction in the osteoblast signal for osteoclastic bone resorption. It could be concluded that, unlike the osteoblasts derived from adult humans, PRL-exposed hFOB cells exhibited indices suggestive of bone gain, which could explain the in vivo findings in young rats. The signal transduction of PRL in osteoblasts involved the PI3K pathway.  相似文献   

10.
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.  相似文献   

11.
Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0–10.0 g/cm2) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca2+ pathway.  相似文献   

12.

Introduction

Sickle cell anemia and thalassemia result in impaired bone health in both adults and youths. Children with other types of chronic hemolytic anemia may also display impaired bone health.

Study Design

To assess bone health in pediatric patients with chronic hemolytic anemia, a cross-sectional study was conducted involving 45 patients with different forms of hemolytic anemia (i.e., 17 homozygous sickle cell disease and 14 hereditary spherocytosis patients). Biochemical, radiographic and anamnestic parameters of bone health were assessed.

Results

Vitamin D deficiency with 25 OH-vitamin D serum levels below 20 ng/ml was a common finding (80.5%) in this cohort. Bone pain was present in 31% of patients. Analysis of RANKL, osteoprotegerin (OPG) and osteocalcin levels indicated an alteration in bone modeling with significantly elevated RANKL/OPG ratios (control: 0.08+0.07; patients: 0.26+0.2, P = 0.0007). Osteocalcin levels were found to be lower in patients compared with healthy controls (68.5+39.0 ng/ml vs. 118.0+36.6 ng/ml, P = 0.0001). Multiple stepwise regression analysis revealed a significant (P<0.025) influence of LDH (partial r2 = 0.29), diagnosis of hemolytic anemia (partial r2 = 0.05) and age (partial r2 = 0.03) on osteocalcin levels. Patients with homozygous sickle cell anemia were more frequently and more severely affected by impaired bone health than patients with hereditary spherocytosis.

Conclusion

Bone health is impaired in pediatric patients with hemolytic anemia. In addition to endocrine alterations, an imbalance in the RANKL/OPG system and low levels of osteocalcin may contribute to this impairment.  相似文献   

13.
骨是一种动态更新的组织,它不断进行骨吸收(bone resorption)与骨形成(bone formation)的平衡,这个过程称之为骨重建(bone remodeling).核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)是骨吸收和骨形成耦联的关键,具有诱导破骨细胞(osteoclast, OC)生成、活化,抑制破骨细胞凋亡的作用.RANKL最初发现于活化的T细胞,但骨重建过程中RANKL主要来源于骨细胞、成骨细胞和骨髓基质细胞.RANKL/核因子κB受体活化因子(receptor activator of nuclear factor κB,RANK)/骨保护素(osteoprotegerin, OPG)信号通路在成骨细胞调控破骨细胞生成的过程中起着重要的调节作用,是维持骨重建平衡的关键.本文就RANKL及其在骨中的分子作用机制作一综述.  相似文献   

14.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

15.
Hyperprolactinemia caused by physiological or pathological conditions, such as those occurring during lactation and prolactinoma, respectively, results in progressive osteopenia. The underlying mechanisms, however, are controversial. Prolactin (PRL) may directly attenuate the functions of osteoblasts, since these bone cells express PRL receptors. The present study therefore aimed to investigate the effects of PRL on the expression of genes related to the osteoblast functions by using quantitative real-time PCR technique. Herein, we used primary osteoblasts that were derived from the tibiae of adult rats and displayed characteristics of differentiated osteoblasts, including in vitro mineralization. Osteoblasts exposed for 48 h to 1000 ng/mL PRL, but not to 10 or 100 ng/mL PRL, showed decreases in the mRNA expression of Runx2, osteoprotegerin (OPG), and receptor activator of nuclear factor kappaBeta ligand (RANKL) by 60.49%, 72.74%, and 87.51%, respectively. Nevertheless, PRL did not change the RANKL/OPG ratio, since expression of OPG and RANKL were proportionally decreased. These concentrations of PRL had no effect on the mRNA expression of osteocalcin and osteopontin, nor on mineralization. High pathologic concentrations of PRL (1000 ng/mL) may downregulate expression of genes that are essential for osteoblast differentiation and functions. The present results explained the clinical findings of hyperprolactinemia-induced bone loss.  相似文献   

16.
17.
It is unclear how bone cells at different sites detect mechanical loading and how site-specific mechanotransduction affects bone homeostasis. To differentiate the anabolic mechanical responses of mandibular cells from those of calvarial and long bone cells, we isolated osteoblasts from C57B6J mouse bones, cultured them for 1 week, and subjected them to therapeutic low intensity pulsed ultrasound (LIPUS). While the expression of the marker proteins of osteoblasts and osteocytes such as alkaline phosphatase and FGF23, as well as Wnt1 and β-catenin, was equally upregulated, the expression of mandibular osteoblast messages related to bone remodeling and apoptosis differed from that of messages of other osteoblasts, in that the messages encoding the pro-remodeling protein RANKL and the anti-apoptotic protein Bcl-2 were markedly upregulated from the very low baseline levels. Blockage of the PI3K and α5β1 integrin pathways showed that the mandibular osteoblast required mechanotransduction downstream of α5β1 integrin to upregulate expression of the proteins β-catenin, p-Akt, Bcl-2, and RANKL. Mandibular osteoblasts thus must be mechanically loaded to preserve their capability to promote remodeling and to insure osteoblast survival, both of which maintain intact mandibular bone tissue. In contrast, calvarial Bcl-2 is fully expressed, together with ILK and phosphorylated mTOR, in the absence of LIPUS. The antibody blocking α5β1 integrin suppressed both the baseline expression of all calvarial proteins examined and the LIPUS-induced expression of all mandibular proteins examined. These findings indicate that the cellular environment, in addition to the tridermic origin, determines site-specific bone homeostasis through the remodeling and survival of osteoblastic cells. Differentiated cells of the osteoblastic lineage at different sites transmit signals through transmembrane integrins such as α5β1 integrin in mandibular osteoblasts, whose signaling may play a major role in controlling bone homeostasis.  相似文献   

18.
During embryogenesis the bone tissue of craniomandibular joint (CMJ) is formed through two pathways: intramembranous ossification and endochondral ossification. The development process is under the control of regulatory factors.The osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kappaB ligand are key regulators of osteoclastogenesis. The aim of this study is the localization of OPG and RANKL mRNA and protein in the foetal CMJ by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: OPG and RANKL mRNA and protein were co-localized in the same cell types; OPG and RANKL were specially immunolocated in osteogenic cells; immunolabeling was often seen in the nucleus and cytoplasm of otherwise negative hypertrophic chondrocytes; IHC and ISH labeling decreased from proliferative to hypertrophic chondrocytes; early osteocytes showed dual protein expression and some of the mature osteocytes were ISH-negative; periosteal osteoclasts and chondroclasts were mostly stained by IHC and variably labeled by ISH; the new bone matrix and trabecular borders showed intense immunolabeling. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism in the CMJ development and their extracellular presence in the new bone matrix and trabecular borders suggests a local regulatory role.  相似文献   

19.
目的:探讨胰岛素对2型糖尿病骨质疏松大鼠血清及骨OPG(osteoprotegerin)、RANKL(OPG receptor activator nuclear factork B)表达水平的影响。方法:以高脂高糖饲料喂养4周同时饮用3%果糖水导致胰岛素抵抗小鼠,再以小剂量链脲佐菌素(30mg/kg)腹腔注射1次,2周后诱导建立2型糖尿病小鼠模型。对照组动物则给予正常饲料及饮用水进行喂养。模型建立成功后,对模型2组大鼠进行胰岛素治疗,分别采用OPG和RANKLelisa试剂盒对正常动物模型和糖尿病动物模型血清和骨组织中OPG,RANKL含量进行比较分析,采用血糖分析仪对不同组动物的血糖进行比较分析,采用骨密度分析仪对动物的骨密度进行分析,了解高血糖对于骨密度及血清,骨组织中OPG,RANKL含量的影响以及胰岛素对高血糖骨质疏松造成的结果的影响。结果:相较于正常组大鼠,模型组大鼠血清及髂骨中OPG、血糖、糖化血红蛋白、髂骨密度表达显著下调(P0.05),而RANKL表达显著上调(P0.05),胰岛素处理的模型大鼠血清及骨中OPG含量较模型组大鼠显著升高,血清及骨组织中RANKL表达显著下调(P0.05)。结论:胰岛素能够显著降低2型糖尿病骨质疏松大鼠血清及骨组织中RANKL的表达,显著上调OPG的表达。  相似文献   

20.
Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号