首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kidney development is distinguished by the sequential formation of three structures of putatively equivalent function from the intermediate mesoderm, the pronephros, mesonephros, and metanephros. While these organs differ morphologically, their basic structural organization exhibits important similarities. The earliest form of the kidney, the pronephros, is the primary blood filtration and osmoregulatory organ of fish and amphibian larvae. Simple organization and rapid formation render the Xenopus pronephric kidney an ideal model for research on the molecular and cellular mechanisms dictating early kidney organogenesis. A prerequisite for this is the identification of genes critical for pronephric kidney development. This review describes the emerging framework of genes that act to establish the basic components of the pronephric kidney: the corpuscle, tubules, and the duct. Systematic analysis of marker gene expression, in temporal and spatial resolution, has begun to reveal the molecular anatomy underlying pronephric kidney development. Furthermore, the emerging evidence indicates extensive conservation of gene expression between pronephric and metanephric kidneys, underscoring the importance of the Xenopus pronephric kidney as a simple model for nephrogenesis. Given that Xenopus embryos allow for easy testing of gene function, the pathways that direct cell fate decisions in the intermediate mesoderm to make the diverse spectrum of cell types of the pronephric kidney may become unraveled in the future.  相似文献   

2.
The structure of the pronephros in Russian sturgeon larvae, Acipenser gueldenstaedtii Brandt, at different stages of early postembryonic development (from hatching till 14 days old), was studied with histological and electron microscopy methods. The formed pronephros is represented by a system of bilaterally located pronephric tubules and an external single glomus, which is not integrated directly into pronephric tubules and is located in closed pronephric chamber. The glomus is positioned below the dorsal aorta and is vascularized by its capillaries. The thin structure of the glomus has the same characteristic features that are typical of and needed for the functions of any filtering organ. By the time when larvae transfer fully to exogenous feeding, the pronephros undergoes significant degradation and it is replaced by the mesonephric kidney which develops during the period of function of the pronephros. The peculiarities of the pronephros in acipenserids are discussed comparatively with the same organ in teleosts and amphibians.  相似文献   

3.
The embryonic pronephric kidneys of Xenopus and zebrafish serve as models to study vertebrate nephrogenesis. Recently, multiple subdomains within the Xenopus pronephros have been defined based on the expression of several transport proteins. In contrast, very few studies on the expression of renal transporters have been conducted in zebrafish. We have recently shown that the anterior and posterior segments of the zebrafish pronephric duct may correspond to the proximal tubule and distal tubule/duct compartments of the Xenopus and higher vertebrate pronephros, respectively. Here, we report the embryonic expression pattern of the Na(+)/PO(4) cotransporter SLC20A1 (PiT1/Glvr-1) gene encoding a type III sodium-dependent phosphate cotransporter in Xenopus and zebrafish. In Xenopus, SLC20A1 mRNA is expressed in the somitic mesoderm and lower level of expression is detected in the neural tube, eye, and neural crest cells. From stage 25, SLC20A1 is also detectable in the developing pronephros where expression is restricted to the late portion of the distal pronephric tubules. In zebrafish, SLC20A1 is transcribed from mid-somitogenesis in the anterior part of the pronephros where its expression corresponds to the rostral portion of the expression of other proximal tubule-specific markers. Outside the pronephros, lower level of SLC20A1 expression is also observed in the posterior cardinal and caudal veins. Based on the SLC20A1 expression domain and that of other transporters, four segments have been defined within the zebrafish pronephros. Together, our data reveal that the zebrafish and Xenopus pronephros have non-identical proximo-distal organizations.  相似文献   

4.
5.
6.
The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.  相似文献   

7.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

8.
We performed functional analyses of cadherin-6 (cdh6) in zebrafish nephrogenesis using antisense morpholino oligonucleotide (MO) inhibition combined with in situ hybridization. We have cloned a zebrafish homolog (accession number AB193290) of human K-cadherin (CDH6), which showed 6063% identity and 7678% similarity to the human, mouse, chicken and Xenopus homologs. Whole-mount in situ hybridization showed that cdh6 is expressed in the pronephric ducts and nephron primordia in addition to the central and peripheral nervous systems. Expression of cdh6 in the pronephric ducts was first detected at 14 hours post-fertilization (hpf) and increased to 24 hpf. Embryos injected with MOs directed against cdh6 (cdh6MOs) showed developmental defects, including a small head, body axis curvature, short yolk extension and a short bent tail by 30 hpf and edema appeared in the thorax by 42 hpf. Such defects and edema became more marked by 52 hpf and most of the affected embryos died by 5 days post-fertilization. Embryos injected with cdh6MOs were subjected to in situ hybridization with probes for the pronephric markers, wt1 and pax2.1, to examine disturbed development of the anterior region of the pronephric ducts and the nephron primordia. Histological studies showed malformation of the pronephros as abnormally fused glomerulus primordia, fused or abnormally bent pronephric tubule anlagen and coarctated pronephric ducts. These results suggest that cdh6 plays pivotal roles in the development of the pronephros in zebrafish embryos.  相似文献   

9.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (> 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric anlagen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment  相似文献   

10.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (less than 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric analgen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment.  相似文献   

11.
12.
The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct-specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6-positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c-ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.  相似文献   

13.
Pax genes are important developmental regulators and function at multiple stages of vertebrate kidney organogenesis. In this report, we have used the zebrafish pax2.1 mutant no isthmus to investigate the role for pax2.1 in development of the pronephros. We demonstrate a requirement for pax2.1 in multiple aspects of pronephric development including tubule and duct epithelial differentiation and cloaca morphogenesis. Morphological analysis demonstrates that noi(- )larvae specifically lack pronephric tubules while glomerular cell differentiation is unaffected. In addition, pax2.1 expression in the lateral cells of the pronephric primordium is required to restrict the domains of Wilms' tumor suppressor (wt1) and vascular endothelial growth factor (VEGF) gene expression to medial podocyte progenitors. Ectopic podocyte-specific marker expression in pronephric duct cells correlates with loss of expression of the pronephric tubule and duct-specific markers mAb 3G8 and a Na(+)/K(+) ATPase (&agr;)1 subunit. The results suggest that the failure in pronephric tubule differentiation in noi arises from a patterning defect during differentiation of the pronephric primordium and that mutually inhibitory regulatory interactions play an important role in defining the boundary between glomerular and tubule progenitors in the forming nephron.  相似文献   

14.
The Wilms tumor protein WT1 is an essential factor for kidney development. In humans, mutations in WT1 lead to Wilms tumor, a pediatric kidney cancer as well as to developmental anomalies concerning the urogenital tract. Inactivation of Wt1 in mice causes multiple organ defects most notably agenesis of the kidneys. In zebrafish, two paralogous wt1 genes exist, wt1a and wt1b. The wt1 genes are expressed in a similar and overlapping but not identical pattern. Here, we have examined the role of both wt1 genes in early kidney development employing a transgenic line with pronephros specific GFP expression and morpholino knockdown experiments. Inactivation of wt1a led to failure of glomerular differentiation and morphogenesis resulting in a rapidly expanding general body edema. In contrast, knockdown of wt1b was compatible with early glomerular development. After 48 h, however, wt1b morphant embryos developed cysts in the region of the glomeruli and tubules and subsequent pericardial edema at 4 days post-fertilization. Thus, our data suggest different functions for wt1a and wt1b in zebrafish nephrogenesis. While wt1a has a more fundamental and early role in pronephros development and is essential for the formation of glomerular structures, wt1b functions at later stages of nephrogenesis.  相似文献   

15.

Background

The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals.

Results

We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney. We analyzed the expression of over 240 genes, which included members of the solute carrier, claudin, and aquaporin gene families, as well as selected ion channels. The obtained expression patterns were deposited in the searchable European Renal Genome Project Xenopus Gene Expression Database. We found that 112 genes exhibited highly regionalized expression patterns that were adequate to define the segmental organization of the pronephric nephron. Eight functionally distinct domains were discovered that shared significant analogies in gene expression with the mammalian metanephric nephron. We therefore propose a new nomenclature, which is in line with the mammalian one. The Xenopus pronephric nephron is composed of four basic domains: proximal tubule, intermediate tubule, distal tubule, and connecting tubule. Each tubule may be further subdivided into distinct segments. Finally, we also provide compelling evidence that the expression of key genes underlying inherited renal diseases in humans has been evolutionarily conserved down to the level of the pronephric kidney.

Conclusion

The present study validates the Xenopus pronephros as a genuine model that may be used to elucidate the molecular basis of nephron segmentation and human renal disease.  相似文献   

16.
In Xenopus, the pronephros is the functional larval kidney and consists of two identifiable components; the glomus, the pronephric tubules, which can be divided into four separate segments, based on marker gene expression. The simplicity of this organ, coupled with the fact that it displays the same basic organization and function as more complex mesonephros and metanephros, makes this an attractive model to study vertebrate kidney formation. In this study, we have performed a functional screen specifically to identify genes involved in pronephros development in Xenopus. Gain-of-function screens are performed by injecting mRNA pools made from a non-redundant X. tropicalis full-length plasmid cDNA library into X. laevis eggs, followed by sib-selection to identify the single clone that caused abnormal phenotypes in the pronephros. Out of 768 egg and gastrula stage cDNA clones, 31 genes, approximately 4% of the screened clones, affected pronephric marker expression examined by whole mount in situ hybridization or antibody staining. Most of the positive clones had clear expression patterns in pronephros and predicted/established functions highly likely to be involved in developmental processes. In order to carry out a more detailed study, we selected Sox7, Cpeb3, P53csv, Mecr and Dnajc15, which had highly specific expression patterns in the pronephric region. The over-expression of these five selected clones indicated that they caused pronephric abnormalities with different temporal and spatial effects. These results suggest that our strategy to identify novel genes involved in pronephros development was highly successful, and that this strategy is effective for the identification of novel genes involved in late developmental events.  相似文献   

17.
18.
The zebrafish pronephros is a valuable model for studying kidney development and diseases. Ultrastructural studies have revealed that zebrafish and mammals share similarities in nephron structures such as podocytes, slit diaphragms, glomerular basement membrane, and endothelium. However, the basic ultrastructural features of the pronephric glomerulus during glomerulogenesis have not been characterized. To understand these features, it is instructive to consider the developmental process of the pronephros glomerulus. Here, we describe the ultrastructural features of pronephric glomerulus in detail from 24 h hours post‐fertilization (hpf) to 144 hpf, the period during which the pronephric glomerulus develops from initiation to its mature morphology. The pronephric glomerulus underwent progressive morphogenesis from 24 to 72 hpf, and presumptive glomerular cells were observed ventral to the aorta region at 24 hpf. The nascent glomerular basement membrane and initial lumen were formed at 36 hpf. A lumen was clearly visible in the region of the pronephros at 48 hpf. At 60 hpf, the pronephric glomerulus contained more patches of capillaries. After these transformations, the complex capillary vessel networks had formed inside the glomerulus, which was surrounded by podocyte bodies with elaborate foot processes as well as well‐formed glomerular basement membrane by 72 hpf. The number of renal glomerular cells rapidly increased, and the glomerulus presented its delicate structural features by 96 hpf. Morphogenesis was completed at 120 hpf with the final formation of the pronephric glomerulus. J. Morphol. 277:1104–1112, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The structure of the kidney and the localization of Na+, K+-ATPase (NKA) immunopositive cells were examined throughout the postembryonic development of the Persian sturgeon, Acipenser persicus, from newly hatched prelarvae (10 mm) to 20 days post hatch (20 DPH) larvae (31 mm). Investigations were conducted through histology and immunohistochemistry by using the light and immunofluorescence microscopy. The pronephros was observed in newly hatched prelarvae. The cells lining the distal pronephric tubules and their collecting ducts showed laterally expressed NKA immunofluorescence that later extended throughout the whole cytoplasm. Mesonephrogenous placodes and pre-glomeruli were distinguished at 2 DPH along the collecting ducts posteriorly. Their tubules were formed and present in kidney mesenchyma, differentiated into neck, proximal, distal and collecting segments at 7 DPH when NKA immunopositive cells were observed. Their distal and collecting tubules showed an increasing immunofluorescence throughout their cytoplasm while the glomeruli remained unstained. From D 9 to D 17, the epithelial layer of pronephric collecting duct changed along the mesonephros to form ureters. Ureters, possessing isolated strong NKA immunopositive cells, appeared as two sac-like structures hanging under the trunk kidney. Since NKA immunopositive cells were not observed on the tegument or along the digestive tract of newly hatched prelarva, and also the gills are not formed yet, the pronephros is the only osmoregulatory organ until 4 DPH. At the larval stage, the pronephros and mesonephros are functional osmoregulatory organs and actively reabsorb necessary ions from the filtrate.  相似文献   

20.
Gilbert T  Leclerc C  Moreau M 《Biochimie》2011,93(12):2126-2131
From the formation of a simple kidney in amphibian larvae, the pronephros, to the formation of the more complex mammalian kidney, the metanephros, calcium is present through numerous steps of tubulogenesis and nephron induction. Several calcium-binding proteins such as regucalcin/SMP-30 and calbindin-D28k are commonly used to label pronephric tubules and metanephric ureteral epithelium, respectively. However, the involvement of calcium and calcium signalling at various stages of renal organogenesis was not clearly delineated. In recent years, several studies have pinpointed an unsuspected role of calcium in determination of the pronephric territory and for conversion of metanephric mesenchyme into nephrons. Influx of calcium and calcium transients have been recorded in the pool of renal progenitors to allow tubule formation, highlighting the occurrence of calcium-dependent signalling events during early kidney development. Characterization of nuclear calcium signalling is emerging. Implication of the non-canonical calcium/NFAT Wnt signalling pathway as an essential mechanism to promote nephrogenesis has recently been demonstrated. This review examines the current knowledge of the impact of calcium ions during embryonic development of the kidney. It focuses on Ca2+ binding proteins and Ca2+ sensors that are involved in renal organogenesis and briefly examines the link between calcium-dependent signals and polycystins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号