首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Cell adhesion molecules in myogenesis   总被引:7,自引:0,他引:7  
  相似文献   

2.
3.
4.
Skeletal muscle satellite cells and adult myogenesis   总被引:9,自引:0,他引:9  
  相似文献   

5.
To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.  相似文献   

6.
  相似文献   

7.
We have studied the role of Notch-1 and its antagonist Numb in the activation of satellite cells during postnatal myogenesis. Activation of Notch-1 promoted the proliferation of myogenic precursor cells expressing the premyoblast marker Pax3. Attenuation of Notch signaling by increases in Numb expression led to the commitment of progenitor cells to the myoblast cell fate and the expression of myogenic regulatory factors, desmin, and Pax7. In many intermediate progenitor cells, Numb was localized asymmetrically in actively dividing cells, suggesting an asymmetric cell division and divergent cell fates of daughter cells. The results indicate that satellite cell activation results in a heterogeneous population of precursor cells with respect to Notch-1 activity and that the balance between Notch-1 and Numb controls cellular homeostasis and cell fate determination.  相似文献   

8.
Summary HeLa cells harvested from density-inhibited or fast growing suspension cultures, were incubated in NaCl solutions of different tonicity. Cell size enlargement produced by hypotonicity is accompanied by an increased sedimentation rate of the density-inhibited cells, whereas no appreciable change is observed in the sedimentation rate of fast growing cells. Hypotonicity also has no effect on the sedimentation rate of density-inhibited cells which previously had been treated with neuraminidase or trypsin. It is shown that the effect of hypotonicity on density-inhibited cells cannot be ascribed to release of cell surface sialic acids during hypotonic incubation. Several arguments are presented which indicate that the changes in sedimentation rate, as measured in the rotating suspension system, are not the direct consequence of the alterations in cell size, but rather must be attributed to differences in intercellular adhesiveness resulting from the size alterations. Analogous changes in intercellular adhesiveness and cell size are shown to occur during growth in isotonic suspension culture. The results can be explained by assuming that changes in cell size affect the intercellular adhesiveness by modifying the extent to which cell surface sialic acids counteract adhesion.  相似文献   

9.
Paxillin is an adapter protein regulating signaling and focal adhesion assembly that has been linked to malignant potential in many malignancies. Overexpression of paxillin has been noted in aggressive tumors. Integrin-mediated binding through the focal adhesion complex is important in metastatic adhesion and is upregulated by extracellular pressure in malignant colonocytes through FAK and Src activation. Neither head and neck cancers nor paxillin have been studied in this regard. We hypothesized that paxillin would play a role in modulating squamous cancer adhesion both at baseline and under conditions of increased extracellular pressure. Using SCC25 tongue squamous cancer cells stably transfected with either an empty selection vector or paxillin expression and selection vectors, we studied adhesion to collagen, paxillin, FAK, and Src expression and phosphorylation in cells maintained for 30 min under ambient or 15 mmHg increased pressure conditions. Paxillin-overexpressing cells exhibited adhesion 121 +/- 2.9% of that observed in vector-only cells (n = 6, P < 0.001) under ambient pressure. Paxillin-overexpression reduced FAK phosphorylation. Pressure stimulated adhesion to 118 +/- 2.3% (n = 6, P < 0.001) of baseline in vector-only cells, similar to its effect in the parental line, and induced paxillin, FAK, and Src phosphorylation. However, increased pressure did not stimulate adhesion or phosphorylate paxillin, FAK, or Src further in paxillin-overexpressing cells. Metastasizing squamous cancer cell adhesiveness may be increased by paxillin-overexpression or by paxillin activation by extracellular pressure during surgical manipulation or growth within a constraining compartment. Targeting paxillin in patients with malignancy and minimal tumor manipulation during surgical resection may be important therapeutic adjuncts.  相似文献   

10.
11.
12.
Temporal appearance of satellite cells during myogenesis.   总被引:3,自引:0,他引:3  
In this study, differences between fetal and adult myoblasts in clonal and high density culture have been used to determine when adult myoblasts can first be detected during avian development. The results indicate that avian adult myoblasts are apparent as a distinct population of myoblasts during the midfetal stage of development. Three different criteria were used to differentiate fetal and adult myoblasts and demonstrate when adult myoblasts become a major proportion of the myoblast population: (1) differences in slow myosin heavy chain 1 (MHC1) isoform expression, (2) initiation of DNA synthetic activity, and (3) average myoblast length. Fetal chicken (ED10-12) pectoralis muscle (PM) myoblasts form myotubes that express slow MHC1 after prolonged culture, while adult chicken PM myoblasts do not. Fetal avian myoblasts were active in DNA synthesis and large when first isolated, reaching peak rates of synthesis by 24 hr in culture, while adult myoblasts were inactive in DNA synthesis and small when first isolated, only reaching peak rates of DNA synthesis and size at 3 days of incubation. A dramatic decrease in the percentage of muscle colonies with fibers that expressed slow MHC1 was observed between the midfetal stage and hatching in the chicken, along with a corresponding decrease in myoblast DNA synthetic activity and average length during this same period in both the chicken and the quail. Myoblast activity and average length increased again 3-4 days posthatch and a small transient increase in the number of slow MHC1-expressing clones was also associated with the massive growth of muscle that occurs in the neonatal bird. We conclude that adult myoblasts are present as a distinct population of myoblasts at least as early as the midfetal stages of avian development.  相似文献   

13.
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer‐lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature‐specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature‐specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature‐associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age‐related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.  相似文献   

14.
15.
Satellite cells are the primary stem cells in adult skeletal muscle, and are responsible for postnatal muscle growth, hypertrophy and regeneration. In mature muscle, most satellite cells are in a quiescent state, but they activate and begin proliferating in response to extrinsic signals. Following activation, a subset of satellite cell progeny returns to the quiescent state during the process of self-renewal. Here, we review recent studies of satellite cell biology and focus on the key transitions from the quiescent state to the state of proliferative activation and myogenic lineage progression and back to the quiescent state. The molecular mechanisms of these transitions are considered in the context of the biology of the satellite cell niche, changes with age, and interactions with established pathways of myogenic commitment and differentiation.  相似文献   

16.
The folding and unfolding kinetics of the B-domain of staphylococcal protein A, a small three-helix bundle protein, were probed by NMR. The lineshape of a single histidine resonance was fit as a function of denaturant to give folding and unfolding rate constants. The B-domain folds extremely rapidly in a two-state manner, with a folding rate constant of 120,000 s-1, making it one of the fastest-folding proteins known. Diffusion-collision theory predicts folding and unfolding rate constants that are in good agreement with the experimental values. The apparent rate constant as a function of denaturant ('chevron plot') is predicted within an order of magnitude. Our results are consistent with a model whereby fast-folding proteins utilize a diffusion-collision mechanism, with the preorganization of one or more elements of secondary structure in the unfolded protein.  相似文献   

17.
18.
It is widely acknowledged that cultured myoblasts can not differentiate at very low density. Here we analyzed the mechanism through which cell density influences myogenic differentiation in vitro. By comparing the behavior of C2C12 myoblasts at opposite cell densities, we found that, when cells are sparse, failure to undergo terminal differentiation is independent from cell cycle control and reflects the lack of p27Kip1 and MyoD in proliferating myoblasts. We show that inhibition of p27Kip1 expression impairs C2C12 cell differentiation at high density, while exogenous p27Kip1 allows low-density cultured C2C12 cells to enter the differentiative program by regulating MyoD levels in undifferentiated myoblasts. We also demonstrate that the early induction of p27Kip1 is a critical step of the N-cadherin-dependent signaling involved in myogenesis. Overall, our data support an active role of p27Kip1 in the decision of myoblasts to commit to terminal differentiation, distinct from the regulation of cell proliferation, and identify a pathway that, reasonably, operates in vivo during myogenesis and might be part of the phenomenon known as "community effect".  相似文献   

19.
T-cadherin (T-cad), an unusual glycosylphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion molecules, is widely expressed in the cardiovascular system. The expression profile of T-cad within diseased (atherosclerotic and restenotic) vessels indicates some relationship between expression of T-cad and the phenotypic status of resident cells. Using cultures of human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC) we investigate the hypothesis that T-cad may function in modulating adhesive properties of vascular cells. Coating of culture plates with recombinant T-cad protein or with antibody against the first amino-terminal domain of T-cad (anti-EC1) significantly decreased adhesion and spreading of SMC and HUVEC. HUVECs adherent on T-cad or anti-EC1 substratum exhibited an elongated morphology and associated redistribution of the cytoskeleton and focal adhesions to a distinctly peripheral location. These changes are characteristic of the less-adhesive, motile or pro-migratory, pro-angiogenic phenotype. Boyden chamber migration assay demonstrated that the deadhesion induced by T-cad facilitates cell migration towards a serum gradient. Overexpression of T-cad in vascular cells using adenoviral vectors does not influence cell adhesion or motility per se, but increases the detachment and migratory responses induced by T-cad substratum. The data suggest that T-cad acts as an anti-adhesive signal for vascular cells, thus modulating vascular cell phenotype and migration properties.  相似文献   

20.
Cell surface carbohydrates in cell adhesion.   总被引:1,自引:0,他引:1  
Carbohydrates are ubiquitous constituents of cell surfaces, and possess many characteristics that make them ideal candidates for recognition molecules. In many systems where cell adhesion plays a critical role, carbohydrate binding proteins have been shown to bind to cell surface carbohydrates and participate in cell-cell interactions. Such systems include fertilization, development, pathogen-host recognition and inflammation. In particular the recent discovery of the LEC-CAMs and their importance in leukocyte biology has refocused attention on lectin-mediated cell adhesion. The LEC-CAMs offer good targets for the development of therapeutics based on carbohydrate structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号