首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.  相似文献   

3.
The purpose of this study is to investigate the expression patterns and role of Notch signaling in human endometrial cells. Notch receptors, Notch 1-3 were expressed in both endometrial epithelial and stromal cells. Notch ligands, Jag1 and Dll4 and Notch target genes, Hes1 and Hey1 were predominantly expressed in endometrial epithelial cells and scarce in stromal cells. Increased de novo synthesis of Dll4 or Jag1 in stromal cells by retroviral delivery significantly induced Hes1 and Hey1. Evaluations of global gene expression by microarrays revealed that more than 400 genes in stromal cells were significantly regulated by Jag1. Gene annotation-based functional analysis classified these genes into biological processes of cell adhesion, cell structure and motility, cell communication, cell cycle, and angiogenesis. This study provides evidence that Notch ligands control the Notch gene activities and may enhance development of human endometrium.  相似文献   

4.
uPAR     
Vascular endothelial growth factor (VEGF)-initiated angiogenesis requires both coordinated proteolytic degradation of extracellular matrix provided by the urokinase plasminogen activator/urokinase receptor (uPA/uPAR) system and regulation of cell-migration provided by integrin–matrix interaction. Previously we have shown that stimulation of pericellular proteolysis induced by VEGF occurs via the VEGF receptor-2 leading to redistribution of uPAR to focal adhesions at the leading edge of endothelial cells. In our recent work published in Cardiovascular Research, we investigated the mechanisms underlying the uPAR-dependent modulation of VEGF-induced endothelial migration. By applying a micropatterning technique we described that VEGF stimulation results in complex formation between uPAR and α5β1-integrin on the cell surface. The subsequent internalization of this complex, important for receptor redistribution, was demonstrated by flow-cytometry and immunohistochemistry. Targeting of the interaction site between uPAR and α5β1 impairs receptor internalization and leads to the inhibition of endothelial cell migration in vitro and in an angiogenesis model in vivo. This proof-of-principle that the interface of uPAR and α5β1-integrin may represent a promising site to therapeutically target tumor angiogenesis raises hope for the development of an anti-angiogenic approach that is limited to only the mobilizing effect of VEGF to endothelial cells, and does not interfere with the inarguably positive effect of VEGF as survival factor.  相似文献   

5.

Background  

In human pancreatic cancer progression, the α6β1-integrin is expressed on cancer cell surface during invasion and metastasis formation. In this study, we investigated whether interleukin (IL)-1α induces the alterations of integrin subunits and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) expression in pancreatic cancer cells. We hypothesize that the alterations of integrin subunits and uPA/uPAR expression make an important role in signaling pathways responsible for biological behavior of pancreatic cancer cells.  相似文献   

6.
Several angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway have been approved for cancer treatment. However, VEGF inhibitors alone were shown to promote tumor invasion and metastasis by increasing intratumoral hypoxia in some preclinical and clinical studies. Emerging reports suggest that Delta-like ligand 4 (Dll4) is a promising target of angiogenesis inhibition to augment the effects of VEGF inhibitors. To evaluate the effects of simultaneous blockade against VEGF and Dll4, we developed a bispecific antibody, HD105, targeting VEGF and Dll4. The HD105 bispecific antibody, which is composed of an anti-VEGF antibody (bevacizumab-similar) backbone C-terminally linked with a Dll4-targeting single-chain variable fragment, showed potent binding affinities against VEGF (KD: 1.3 nM) and Dll4 (KD: 30 nM). In addition, the HD105 bispecific antibody competitively inhibited the binding of ligands to their receptors, i.e., VEGF to VEGFR2 (EC50: 2.84 ± 0.41 nM) and Dll4 to Notch1 (EC50: 1.14 ± 0.06 nM). Using in vitro cell-based assays, we found that HD105 effectively blocked both the VEGF/VEGFR2 and Dll4/Notch1 signaling pathways in endothelial cells, resulting in a conspicuous inhibition of endothelial cell proliferation and sprouting. HD105 also suppressed Dll4-induced Notch1-dependent activation of the luciferase gene. In vivo xenograft studies demonstrated that HD105 more efficiently inhibited the tumor progression of human A549 lung and SCH gastric cancers than an anti-VEGF antibody or anti-Dll4 antibody alone. In conclusion, HD105 may be a novel therapeutic bispecific antibody for cancer treatment.  相似文献   

7.
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol-anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K(+). Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1-occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.  相似文献   

8.
9.
Due to its essential roles in angiogenesis, Notch pathway has emerged as an attractive target for the treatment of pathologic angiogenesis. Although both activation and blockage of Notch signal can impede angiogenesis, activation of Notch signal may be more promising because it was shown that long-term Notch signal blockage resulted in vessel neoplasm. However, an in vivo deliverable Notch ligand with highly efficient Notch-activating capacity has not been developed. Among all the Notch ligands, Delta-like4(Dll4) is specifically involved in angiogenesis. In this study, we generated a novel soluble Notch ligand h D4 R, which consists of the Delta-Serrate-Lag-2 fragment of human Dll4 and an arginine-glycine-aspartate(RGD) motif targeting endothelial cells(ECs). We demonstrated that h D4 R could bind to ECs through its RGD motif and effectively triggered Notch signaling in ECs. Further, we confirmed that h D4 R could suppress angiogenesis in vitro as manifested by network formation assay and sprouting assay. More importantly, h D4 R efficiently repressed neonatal retinal angiogenesis and laser-induced choroidal neovascularization(CNV) as well in vivo. In conclusion, we have developed an in vivo deliverable Notch ligand h D4 R, which suppresses angiogenesis both in vitro and in vivo, thus providing a new approach to tackle excessive angiogenesis relevant disease such as CNV.  相似文献   

10.
How individual components of the vascular basement membrane influence endothelial cell behaviour remains unclear. Here we show that laminin α4 (Lama4) regulates tip cell numbers and vascular density by inducing endothelial Dll4/Notch signalling in vivo. Lama4 deficiency leads to reduced Dll4 expression, excessive filopodia and tip cell formation in the mouse retina, phenocopying the effects of Dll4/Notch inhibition. Lama4-mediated Dll4 expression requires a combination of integrins in vitro and integrin β1 in vivo. We conclude that appropriate laminin/integrin-induced signalling is necessary to induce physiologically functional levels of Dll4 expression and regulate branching frequency during sprouting angiogenesis in vivo.  相似文献   

11.
Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2-4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf.  相似文献   

12.
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.  相似文献   

13.
Ramos C  Rocha S  Gaspar C  Henrique D 《PloS one》2010,5(11):e15515

Background

Notch signalling regulates neuronal differentiation in the vertebrate nervous system. In addition to a widespread function in maintaining neural progenitors, Notch signalling has also been involved in specific neuronal fate decisions. These functions are likely mediated by distinct Notch ligands, which show restricted expression patterns in the developing nervous system. Two ligands, in particular, are expressed in non-overlapping complementary domains of the embryonic spinal cord, with Jag1 being restricted to the V1 and dI6 progenitor domains, while Dll1 is expressed in the remaining domains. However, the specific contribution of different ligands to regulate neurogenesis in vertebrate embryos is still poorly understood.

Methodology/Principal Findings

In this work, we investigated the role of Jag1 and Dll1 during spinal cord neurogenesis, using conditional knockout mice where the two genes are deleted in the neuroepithelium, singly or in combination. Our analysis showed that Jag1 deletion leads to a modest increase in V1 interneurons, while dI6 neurogenesis was unaltered. This mild Jag1 phenotype contrasts with the strong neurogenic phenotype detected in Dll1 mutants and led us to hypothesize that neighbouring Dll1-expressing cells signal to V1 and dI6 progenitors and restore neurogenesis in the absence of Jag1. Analysis of double Dll1;Jag1 mutant embryos revealed a stronger increase in V1-derived interneurons and overproduction of dI6 interneurons. In the presence of a functional Dll1 allele, V1 neurogenesis is restored to the levels detected in single Jag1 mutants, while dI6 neurogenesis returns to normal, thereby confirming that Dll1-mediated signalling compensates for Jag1 deletion in V1 and dI6 domains.

Conclusions/Significance

Our results reveal that Dll1 and Jag1 are functionally equivalent in controlling the rate of neurogenesis within their expression domains. However, Jag1 can only activate Notch signalling within the V1 and dI6 domains, whereas Dll1 can signal to neural progenitors both inside and outside its domains of expression.  相似文献   

14.
《The Journal of cell biology》1995,131(6):1609-1622
The GPI-anchored urokinase plasminogen activator receptor (uPAR) does not internalize free urokinase (uPA). On the contrary, uPAR-bound complexes of uPA with its serpin inhibitors PAI-1 (plasminogen activator inhibitor type-1) or PN-1 (protease nexin-1) are readily internalized in several cell types. Here we address the question whether uPAR is internalized as well upon binding of uPA-serpin complexes. Both LB6 clone 19 cells, a mouse cell line transfected with the human uPAR cDNA, and the human U937 monocytic cell line, express in addition to uPAR also the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP/alpha 2-MR) which is required to internalize uPAR-bound uPA-PAI-1 and uPA-PN-1 complexes. Downregulation of cell surface uPAR molecules in U937 cells was detected by cytofluorimetric analysis after uPA-PAI-1 and uPA-PN-1 incubation for 30 min at 37 degrees C; this effect was blocked by preincubation with the ligand of LRP/alpha 2-MR, RAP (LRP/alpha 2-MR- associated protein), known to block the binding of the uPA complexes to LRP/alpha 2-. MR. Downregulation correlated in time with the intracellular appearance of uPAR as assessed by confocal microscopy and immuno-electron microscopy. After 30 min incubation with uPA-PAI-1 or uPA-PN-1 (but not with free uPA), confocal microscopy showed that uPAR staining in permeabilized LB6 clone 19 cells moved from a mostly surface associated to a largely perinuclear position. This effect was inhibited by the LRP/alpha 2-MR RAP. Perinuclear uPAR did not represent newly synthesized nor a preexisting intracellular pool of uPAR, since this fluorescence pattern was not modified by treatment with the protein synthesis inhibitor cycloheximide, and since in LB6 clone 19 cells all of uPAR was expressed on the cell surface. Immuno-electron microscopy confirmed the plasma membrane to intracellular translocation of uPAR, and its dependence on LRP/alpha 2-MR in LB6 clone 19 cells only after binding to the uPA-PAI-1 complex. After 30 min incubation at 37 degrees C with uPA-PAI-1, 93% of the specific immunogold particles were present in cytoplasmic vacuoles vs 17.6% in the case of DFP-uPA. We conclude therefore that in the process of uPA-serpin internalization, uPAR itself is internalized, and that internalization requires the LRP/alpha 2-MR.  相似文献   

15.
Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR.  相似文献   

16.
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin αvβ3, evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the αvβ3 blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin αvβ3 interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin αvβ3, uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin αvβ3 and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.  相似文献   

17.
Notch signalling is a key pathway controlling angiogenesis in normal tissues and tumours. This has become a major focus of development of anticancer therapy, but to develop this appropriately, we need further understanding of the mechanisms of regulation of Dll4 (Delta-like ligand 4), a key endothelial Notch ligand. Dll4 and VEGF (vascular endothelial growth factor) cross-talk, with VEGF up-regulation of Dll4 and Dll4 down-regulating VEGFR (VEGF receptor) signalling. Both are essential for normal angiogenesis, and blockade of one may produce compensatory changes in the other. The present review considers recent developments in the regulation of Dll4 expression and functions, its role as a mechanism of resistance to anti-angiogenic therapy, and methods needed to develop effective therapy against this target.  相似文献   

18.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.  相似文献   

19.
We have investigated the role of the plasminogen activation cascade in skeletal muscle differentiation. Migrating, undifferentiated myoblasts express urokinase plasminogen activator (uPA) and its cell surface receptor (uPAR). Consequently, uPA is localized predominantly to the cell surface. Preventing uPA from associating with its receptor with a noncatalytic form of uPA (NC-uPA) hinders migration of myoblasts and inhibits differentiation. When myoblasts reach confluence, cease migrating, and start to differentiate, uPAR gets downregulated, and uPA becomes redistributed from the cell surface to the extracellular space. The function of uPA at this stage was tested using the protease inhibitors aprotinin, α2-antiplasmin, or plasminogen activator inhibitor-1 (PAI-1). Contrary to the role of cell-associated uPA, inhibition of soluble uPA/plasmin stimulates differentiation of myoblasts. Aprotinin can inhibit activation of latent TGFβ and stimulates differentiation, suggesting PAI-1 and α2-antiplasmin also may stimulate differentiation via this mechanism. These data suggest that regulation of uPA localization allows a dual function for this protease in regulating cell migration and controlling cell differentiation. J. Cell. Physiol. 171:217–225, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The urokinase-type plasminogen activator system is a proteolytic system involved in tissue remodeling and cell migration. At the cell surface, receptor (uPAR)-bound urokinase (uPA) binds its inhibitor PAI-1, localized in the matrix, and the complex is internalized by endocytic receptors, such as the low-density lipoprotein receptor-related protein (LRP). We previously proposed a nonproteolytic role for the uPA system in human myogenic cell differentiation in vitro, i.e., cell fusion, and showed that myogenic cells can use PAI-1 as an adhesion matrix molecule. The aim of this study was to define the role of the uPA system in myogenic cell migration that is necessary for fusion. Using a two-dimensional motility assay and microcinematography, we showed that any interference with the [uPAR:uPA:PAI-1] complex formation, and interference with LRP binding to this complex, markedly decreased myogenic cell motility. This phenomenon was reversible and independent of plasmin activity. Inhibition of cell motility was associated with suppression of both filopodia and membrane ruffling activity. [uPAR:uPA:PAI-1:LRP] complex formation involves high-affinity molecular interactions and results in quick internalization of the complex. It is likely that this complex supports the membrane ruffling activity involved in the guidance of the migrating cell toward appropriate sites for attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号