首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viability of donor tissues is essential for the success of organ transplantation. Although much work has been done in the field of organ preservation, currently there are few objective methods for evaluating transplant organ viability, and thus preservation efficiency. In the field of cancer biology, single-cell gel electrophoresis (SCGE) is a technique commonly used to measure the efficacy of anti-tumor treatments by measuring the breakdown of tumor cell deoxyribonucleic acid (DNA). This assay has recently been applied to various organs from a postmortem porcine animal model, and cells were found to undergo postmortem breakdown in a way similar to apoptosis-induced DNA fragmentation. Collections of cells from each organ reached levels indicative of non-viability as the postmortem interval (PMI) progressed. The rates of cellular DNA degradation were found to be specific to each organ type at a given ambient temperature. We believe that following the application of various preservation techniques, SCGE assay has the potential to provide a clear indication of cell viability in an organ destined for transplant. As a readily available viability assay, this technique could provide transplant researchers with a useful tool to quantify the efficacy of their experimental organ preservation techniques.  相似文献   

2.
Autophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. It contributes to energy and organelle homeostasis and the preservation of proteome and genome integrity. Although a role in cancer is unquestionable, there are conflicting reports that autophagy can be both oncogenic and tumor suppressive, perhaps indicating that autophagy has different roles at different stages of tumor development. In this report, we address the role of autophagy in a critical stage of cancer progression—tumor cell invasion. Using a glioma cell line containing an inducible shRNA that targets the essential autophagy gene Atg12, we show that autophagy inhibition does not affect cell viability, proliferation or migration but significantly reduces cellular invasion in a 3D organotypic model. These data indicate that autophagy may play a critical role in the benign to malignant transition that is also central to the initiation of metastasis.  相似文献   

3.
Autophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. It contributes to energy and organelle homeostasis and the preservation of proteome and genome integrity. Although a role in cancer is unquestionable, there are conflicting reports that autophagy can be both oncogenic and tumor suppressive, perhaps indicating that autophagy has different roles at different stages of tumor development. In this report, we address the role of autophagy in a critical stage of cancer progression—tumor cell invasion. Using a glioma cell line containing an inducible shRNA that targets the essential autophagy gene Atg12, we show that autophagy inhibition does not affect cell viability, proliferation or migration but significantly reduces cellular invasion in a 3D organotypic model. These data indicate that autophagy may play a critical role in the benign to malignant transition that is also central to the initiation of metastasis.  相似文献   

4.
Like every other adult stem cell in the human body, spermatogonial stem cells (SSCs) have the capacity to either renew themselves or to start the differentiation process, namely, spermatogenesis. Due to the continuation of the stem cell population in the testis, several possible options for preservation and re-establishment of the reproductive potential exist. Currently, spermatogonial stem cell transplantation (SSCT) is considered the most promising tool for fertility restoration in young cancer patients. This technique involves the injection of a testicular cell suspension from a fertile donor into the testis of an infertile recipient. Although, SSCT could prove important for fertility preservation, this technique is not without any risk. Testicular cell suspensions from cancer patients may be contaminated with cancerous cells. It is obvious that reintroduction of malignant cells into an otherwise cured patient must be omitted. Decontamination strategies to solve this problem are discussed. Another alternative to preserve male fertility could be in-vitro culture of SSCs. This approach may be applied to generate spermatozoa in-vitro from cultured spermatogonial stem cells, which, in turn, could be used for intracytoplasmic sperm injection. Xenogeneic transplantation and xenografting are two other hypothetical methods to preserve fertility. However, because of the ethical and biological concerns inherent to these approaches, xenogeneic transplantation and xenografting should be limited to research. When SSCT or SSC culture becomes available for clinical use, efficient protocols for the cryopreservation of SSCs and testicular tissue will be of great benefit. The search for an optimal freezing protocol is discussed. Apart from fertility preservation, SSC studies are useful for other applications as well, such as transgenerational gene therapy and cell-based organ regeneration therapy.  相似文献   

5.
Both Akt 2 and acid ceramidase (ASAH1) are found aberrantly overexpressed in cancer cells, but whether these two enzymes cooperate to induce malignant transformation is not known. We found that in immortalized, non-transformed cells, ectopic co-expression of Akt2 and ASAH1 is significantly more effective than expression of each gene alone at inducing cell invasion and at conferring resistance to apoptosis. Consistent with these observations, siRNA-mediated depletion of both Akt2 and ASAH1 is much more potent than depleting each alone at inhibiting cell viability/proliferation and cell invasion. Furthermore, pharmacological inhibitors of Akt (TCN or MK-2206) and ASAH1 (B13) synergize to inhibit cell viability/proliferation, and combinations of these drugs are more effective than single-agent treatments at inhibiting cell invasion. Taken together, the results suggest that these two enzymes cooperate to induce malignant transformation and warrant further preclinical studies to evaluate the potential of combining inhibitors of Akt and ASAH1 to treat cancer.  相似文献   

6.
7.
Here we describe the fabrication and preservation of mammalian cell-containing hydrogel microarrays that have potential applications in drug screening and pathogen detection. Hydrogel microstructures containing murine fibroblasts were fabricated on silicon substrates and subjected to a "stage-down" freezing process. The percent viability of both immortal and primary embryonic murine fibroblast cells within the gels was determined at various stages in the freezing process, showing that cells entrapped in hydrogel microstructures remained viable throughout the process. When compared to immortalized adherent cultures subjected to the same freezing process, cells within hydrogel structures had higher cell viabilities at all stages during preservation. Finally, the necessity of using a cryoprotectant, dimethyl sulfoxide (DMSO), was investigated. Cells in hydrogels were cryopreserved with and without DMSO. The addition of DMSO altered cell viability after the freeze-thaw process, enhancing viability in an immortalized cell line and decreasing viability in a primary cell line.  相似文献   

8.
Malignant mesothelioma is a rare but aggressive form of malignancy, which is difficult to diagnose and is resistant to current chemotherapeutic treatment options. Molecular techniques have been used to investigate the mechanisms of action and the beneficial therapeutic effects of halofuginone (HF) in several cancers but not malignant mesotheliomas. In this study, the antiproliferative and apoptotic effects of HF were investigated through its ability to deregulate EGFR downstream signalling cascade proteins in the pathologically aggressive malignant mesothelioma and non‐small‐cell lung cancer cells. We showed that administration of HF at nanomolar concentrations induced a dose‐dependent reduction in the viability of cancer cells, made cell cycle arrest, inhibited proliferation of cancer cells via STAT3 and ERK1/2 pathways and triggered the apoptotic cascade via p38MAPK. We demonstrated that the apoptotic cell death mechanism was mediated by enhanced activation of caspase‐3 and concomitant PARP cleavage, downregulation of Bcl‐2 and upregulation of Bax in both malignant mesothelioma and lung cancer cells. In particular, we demonstrated that cancer cells were more sensitive to HF treatment than normal mesothelial cells. Taken together, this study suggests that HF exerts its anticancer effects in lung‐derived cancers by targeting signal transduction pathways mainly through deregulation of ERK1/2, STAT3 and p38MAPK to reduce cancer cell viability, induce cell cycle arrest and apoptotic cell death. Thus, HF might be considered as a potential agent against malignant mesothelioma and/or lung cancer cells.  相似文献   

9.
目前,癌症是导致人类死亡的主要因素之一。尽管在癌症治疗方面取得了巨大进展,但是,其较高的复发率还是会导致死亡。连续治疗失败的一个可能原因是,残留的恶性细胞有类似干细胞的分化潜能,这样就能再次形成肿瘤和造成病灶转移。肿瘤干细胞(cancer stem cell,CSC)假说认为,肿瘤组织中存在具有自我跟新能力,无限增殖和肿瘤形成能力的一小部分肿瘤细胞,近年来,随着在血液肿瘤和实体瘤中相继发现CSC存在的相关证据,对CSC的生物学特性的认识不断深入,对肿瘤的复发、病灶转移、耐药性形成也有了新的观点和研究方向,目前的研究主要集中在其分离鉴定阶段,本文就近年来该方面的研究进展作一综述。  相似文献   

10.
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.  相似文献   

11.
It is generally believed that under normal conditions only B lymphocytes express immunoglobulin. Interestingly, our previous work demonstrated that epithelial cancer tissues and cancer cell lines also express Ig alpha heavy chain. So we further analyzed the potential function of cancer-derived Ig alpha heavy chain. Here we show that blockade of cancer-derived Ig alpha suppressed the growth and viability of cancer cells. And cancer-derived Ig alpha promotes the malignant proliferation ability of cancer cells. Furthermore, we demonstrated that Ig alpha protein increases the access percentage of S phase from the early mitosis of synchronized cancer cells. Our findings support the important role of cancer-derived Ig alpha as a growth promoter of cancer cells, and reveal a novel molecular mechanism for growth and proliferation of cancer cells.  相似文献   

12.
Ischemia reperfusion processes induce damage in renal tubules and compromise the viability of kidney transplants. Understanding the molecular events responsible for tubule damage and recovery would help to develop new strategies for organ preservation. CDK5 has been traditionally considered a neuronal kinase with dual roles in cell death and survival. Here, we demonstrate that CDK5 and their regulators p35/p25 and cyclin I are also expressed in renal tubular cells. We show that treatment with CDK inhibitors promotes the formation of pro-survival CDK5/cyclin I complexes and enhances cell survival upon an ischemia reperfusion pro-apoptotic insult. These findings support the benefit of treating with CDK inhibitors for renal preservation, assisting renal tubule protection.  相似文献   

13.
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.  相似文献   

14.
Microalgae have been investigated for their ability to produce metabolites that exhibit antibacterial activity. However, as research on antibacterial activity progresses, the effect of microalgal extracts on mammalian cells needs to be also assessed. The in vitro effect of microalgal extracts with demonstrated antibacterial activity against the human opportunistic pathogen Staphylococcus aureus was examined on the viability of non‐malignant (MCF10A and 184B5 cells) and malignant human cell lines (A2780 and MCF7). Direct cell counts indicated that the MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) proliferation assay was found to under/overestimate cell viability when specific microalgal extracts and/or concentrations were tested. From direct cell counts, the viability of non‐malignant cells was not reduced after exposure to the extracts, whereas the viability of malignant cells was affected by specific microalgal extracts and concentrations. The results suggest that green microalgae are worthy of further investigation as potential sources of antibiotics, since they did not show a negative effect on the non‐malignant cell lines, MCF10A and 184B5. Additional studies should evaluate the compounds responsible for the anti‐proliferative activity of specific microalgal extracts observed on the malignant cells A2780 and MCF7.  相似文献   

15.
Addition of nitric oxide (NO) donors to NB69 neuroblastoma cells produced a cGMP-independent decrease in cell proliferation, without affecting cell viability or apoptosis. The potency of short half-life NO donors was higher when cell proliferation was stimulated by epidermal growth factor (EGF), as compared with cultures exposed to fetal calf serum (FCS). Immunoprecipitation and western blot analysis of the EGF receptor (EGFR) revealed a significant reduction of its EGF-induced tyrosine phosphorylation in cells treated with the NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NO). When total cell lysates were subjected to western blotting, we observed that DEA-NO also reduced tyrosine phosphorylation in EGF-activated phosphoproteins, but not in those proteins whose tyrosine phosphorylation was evident in the absence of EGF. The effect of NO on EGFR transphosphorylation was concentration-dependent and transient, with a total recovery observed between 1.5 and 3 h after addition of DEA-NO to the cells. When cells were incubated for 15 min with DEA-NO and then washed, the EGFR transphosphorylation returned to control levels immediately, indicating that the interaction of NO with the receptor molecule was fully reversible. NB69 cells expressed both the neuronal and the inducible isoforms of NO synthase (NOS) when cultured in the presence of FCS; under this condition, the NOS inhibitor, N(omega)-nitro-L-arginine methyl ester, produced a small but significant increase in cell proliferation. The results suggest that NO is an endogenous antimitotic agent and that its interaction with EGFR contributes to cytostasis in NB69 cells.  相似文献   

16.
Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.  相似文献   

17.
18.
19.
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.  相似文献   

20.
The method of ultrathin serial sections was used to perform a comparative ultrastructural and 3-dimensional analysis of nucleoli for the following variants of human tumours: benign (fibroadenoma) and malignant (infiltrating ductal carcinoma) tumours of one organ (mammary gland); malignant tumours of epidermal genesis in different organs (squamous cell carcinomas of skin, larynx, lung, gullet, uterus); two forms of malignant tumours (squamous cell and small cell carcinomas) of one organ (lung). The spatial models of nucleoli in these tumour cells are given. The specific signs in architecture of tumour nucleoli was found. Nucleoli of fibroadenomas have well pronounced 1-4 fibrillar centres forming a united system with a lacunar component and intranucleolar chromatin. Unlike benign tumour cells, nucleoli of infiltrating ductal carcinomas are characterized by large, prominent nucleoli containing giant, multiform fibrillar centres with a complicated surface, a well developed granular component and an unusually organized lacunar system. In squamous cell carcinomas of various localization, active, hypertrophied nucleoli with pseudonucleolonemal organization were found. The small cell carcinoma of lung differs from the squamous cell cancer of the same organ by dense, fibrillar nucleoli with a small amount of granular component located on the periphery of the nucleolar body. Nucleolar type reflecting the functional state of malignization process may serve as an additional diagnostic criterion for tumour identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号