首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNAs (miRNAs) encode small RNA molecules of ~22nts in length that regulate the deadenylation, translation, and decay of their target mRNAs. The identification of miRNAs in plants and animals has uncovered a new layer of gene regulation with important implications for development, cellular homeostasis and disease. Because each miRNA is predicted to regulate several hundred genes, a major challenge in the field remains to elucidate the precise roles for each miRNA and to understand the physiological relevance of individual miRNA–target interactions in vivo. Despite the wide variety of biological contexts where miRNAs function, a common theme emerges, whereby miRNAs shape gene expression within both spatial and temporal dimensions by removing messages from previous cellular states as well as modulating the levels of actively transcribed genes. This review will focus on the role that the teleost Danio rerio (zebrafish) has played in shaping our understanding of miRNA function in vertebrates.  相似文献   

2.
Proteases for cell suicide: functions and regulation of caspases.   总被引:20,自引:0,他引:20  
Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.  相似文献   

3.
Protein degradation is accomplished by a diverse collection of proteases. Recent studies have illustrated the importance of proteolysis in the control of many aspects of cellular regulation from photosynthesis to photomorphogenesis. In addition, new results point to a role for proteolysis in programmed cell death, circadian rhythm, and defense response in plants.  相似文献   

4.
Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications.  相似文献   

5.
The effective management of AIDS with HIV protease inhibitors, or the use of angiotensin-converting enzyme inhibitors to treat hypertension, indicates that proteases do make good drug targets. On the other hand, matrix metalloproteinase (MMP) inhibitors from several companies have failed in both cancer and rheumatoid arthritis clinical trials. Mindful of the MMP inhibitor experience, this chapter explores how tractable proteases are as drug targets from a chemistry perspective. It examines the recent success of other classes of drug for the treatment of rheumatoid arthritis, and highlights the need to consider where putative targets lie on pathophysiological pathways--regardless of what kind of therapeutic entity would be required to target them. With genome research yielding many possible new drug targets, it explores the likelihood of discovering proteolytic enzymes that are causally responsible for disease processes and that might therefore make better targets, especially if they lead to the development of drugs that can be administered orally. It also considers the impact that biologics are having on drug discovery, and in particular whether biologically derived therapeutics such as antibodies are likely to significantly alter the way we view proteases as targets and the methods used to discover therapeutic inhibitors.  相似文献   

6.
A cellular suicide strategy of plants: vacuole-mediated cell death   总被引:12,自引:0,他引:12  
Programmed cell death (PCD) occurs in animals and plants under various stresses and during development. Recently, vacuolar processing enzyme (VPE) was identified as an executioner of plant PCD. VPE is a cysteine protease that cleaves a peptide bond at the C-terminal side of asparagine and aspartic acid. VPE exhibited enzymatic properties similar to that of a caspase, which is a cysteine protease that mediates the PCD pathway in animals, although there is limited sequence identity between the two enzymes. VPE and caspase-1 share several structural properties: the catalytic dyads and three amino acids forming the substrate pockets (Asp pocket) are conserved between VPE and caspase-1. In contrast to such similarities, subcellular localizations of these proteases are completely different from each other. VPE is localized in the vacuoles, while caspases are localized in the cytosol. VPE functions as a key molecule of plant PCD through disrupting the vacuole in pathogenesis and development. Cell death triggered by vacuolar collapse is unique to plants and has not been seen in animals. Plants might have evolved a VPE-mediated vacuolar system as a cellular suicide strategy.  相似文献   

7.
The diverse functional roles that proteases play in basic biological processes make them essential for virtually all organisms. Not surprisingly, proteolysis is also a critical process required for many aspects of pathogenesis. In particular, obligate intracellular parasites must precisely coordinate proteolytic events during their highly regulated life cycle inside multiple host cell environments. Advances in chemical, proteomic and genetic tools that can be applied to parasite biology have led to an increased understanding of the complex events centrally regulated by proteases. In this review, we outline recent advances in our knowledge of specific proteolytic enzymes in two medically relevant apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Efforts over the last decade have begun to provide a map of key proteotolyic events that are essential for both parasite survival and propagation inside host cells. These advances in our molecular understanding of proteolytic events involved in parasite pathogenesis provide a foundation for the validation of new networks and enzyme targets that could be exploited for therapeutic purposes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

8.
International Journal of Peptide Research and Therapeutics - In the era of advancement of biotechnology and molecular biology, the structure, catalytic site specification, role in biochemical...  相似文献   

9.
10.
11.
As cells undergo oncogenic transformation and as malignant cells arrive at metastatic sites, a complex interplay occurs with the surrounding stroma. This dialogue between the tumor and stroma ultimately dictates the success of the tumor cells in the given microenvironment. As a result, understanding the molecular mechanisms at work is important for developing new therapeutic modalities. Proteases are major players in the interaction between tumor and stroma. This review will focus on the role of proteases in modulating tumor-stromal interactions of both primary breast and prostate tumors as well as at bone metastatic sites in a way that favors tumor growth.  相似文献   

12.
13.
14.
15.
Yuan J 《Molecular cell》2006,23(1):1-12
The developmental cell death in the nematode C. elegans is controlled by a simple and dedicated genetic program. This genetic program is evolutionarily conserved in higher organisms, including mammals. However, although mammalian homologs of C. elegans cell death gene products continue to regulate apoptosis, they are no longer dedicated regulators of cell death. On the other hand, multiple cellular noncell death-related mechanisms have been recruited to regulate cell death under different conditions. Such evidence suggests that evolution has led to an extensive integration of mammalian apoptosis machinery with multiple cellular physiological processes.  相似文献   

16.
Cells of Neurospora crassa strain 74A, grown on sucrose for 12 h and transferred to a medium containing protein as sole carbon source, would not produce exocellular protease in significant amounts. When a filtrate from a culture induced to make protease by normal growth on a medium containing protein as principal carbon source was added to an exponential-phase culture in protein medium, exocellular protease was made in amounts similar to those made during normal induction. The material in the culture filtrate that participated in the induction process was identified as protease by its heat lability, molecular weight, and the dependence of induction rate on units of proteolytic activity added to the exponential-phase culture. Induction of the formation of exocellular protease by exponential-phase cells appears to require a protein substrate, added proteolytic activity, and protein synthesis. The protease produced by induced exponential-phase cells was as efficient in promoting induction as normally induced enzyme, whereas constitutive intracellular enzyme was only 50% as efficient. The bacterial protease thermolysin was able to induce exocellular protease at 90.7% of the rate observed with added N. crassa exocellular protease.  相似文献   

17.
18.
Treatment of mouse spleen lymphocytes with trypsin (from 0.1 to 1.0 μg/ml) was found to cause a significant stimulation of the incorporation of 3H-thymidine. When spleen cells from nude (congenitally athymic) mice were incubated with trypsin in the absence of serum for 3 days, very high levels of incorporation were noted (stimulation index of 10 to 20). Trypsin was without effect on thymic lymphocytes of the mouse but caused significant activation of human peripheral blood lymphocytes. The stimulatory effect of trypsin was a consequence of its enzymatic activity. Prolonged treatment with pronase also caused small but significant increases in the incorporation of labelled thymidine (stimulation index of 2 to 4) into the thymic and splenic lymphocytes of the mouse and into human lymphocytes. The evidence suggests that trypsin stimulates the B-derived lymphocytes.  相似文献   

19.
20.
Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs). Structural studies of the ICPs of Trypanosoma cruzi (chagasin) and Plasmodium berghei (PbICP) indicated that three loops (termed BC, DE, and FG) are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号