首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.  相似文献   

2.
STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion.  相似文献   

3.
Scd6 is a conserved RGG-motif protein which represses translation by binding eIF4G through its RGG-motif. Lsm and FDF are two other conserved domains present in the protein, however the role of both these domains is unclear. We provide evidence in this report that the Lsm domain is important for the role of Scd6 in translation. Mutant of Scd6 lacking the Lsm domain does not cause overexpression growth defect in a manner comparable to the wild type. Similar results were observed with two distinct point mutants of Scd6 wherein putative RNA-binding motifs DxEKxTV and YVG were mutated. Upon overexpression, the three mutants were defective in inducing formation of P-bodies and stress granules which are conserved sites of translation repression. Importantly localization to granules in response to glucose deprivation and sodium azide stress was defective for Lsm domain mutants indicating that the inability to localize to granules could be a reason for their defective role in translation. Deletion of scd6 impairs Lsm1 foci formation upon glucose deprivation stress which could not be rescued by complementation with Lsm-domain deletion mutant of Scd6 when compared to the full-length protein. Put together, our results highlight the role of Lsm domain and its specific motifs in Scd6 activity and provide crucial insight into its function.  相似文献   

4.
5.
Endocytosis is a dynamic process requiring a network of interacting proteins that assemble and disassemble during cargo capture and vesicle formation. A major mechanism for regulation of this process involves the reversible phosphorylation of endocytic factors. Recently, members of a new kinase family, the Ark/Prk kinases, which include mammalian AAK1 and GAK as well as yeast Prk1p, Ark1p, and Akl1p, were shown to regulate components of the endocytic machinery. These include animal AP-1/AP-2 mu chains and yeast Pan1p (Eps15-like), Sla1p, and epsins, but other potential targets are likely. SCD5, an essential yeast gene, was identified as a suppressor of clathrin deficiency. We also showed that Scd5p is required for normal cortical actin organization and endocytosis, possibly as a targeting subunit for protein phosphatase type 1 (PP1). Scd5p contains a central triple repeat (3R) motif related to a known Prk1p consensus phosphorylation site L/IxxQxTG, except that Q is replaced by T. In this study we demonstrate that the Scd5p 3R sequence is phosphorylated by Prk1p to negatively regulate Scd5p. Furthermore, we show that Prk1p, Ark1p, and Akl1p have different substrate specificities and play distinct roles in actin organization and endocytosis.  相似文献   

6.
We have isolated two high copy, allele-specific suppressors of the temperature sensitivity of mutations in POL1, the gene that encodes the catalytic subunit of DNA polymerase α in the yeast Saccharomyces cerevisiae. Both genes, PSP1 and PSP2, also partially suppressed a mutation in POL3 which encodes DNA polymerase δ, and both also affected a mutation in CDC6, which acts in initiation of DNA replication. Suppression was not general, since ts mutations in several genes unrelated to replication were not affected. PSP1 was partially effective on low-copy-number vectors, while PSP2 required high copy numbers. The presence of suppressing plasmids did not alter the steady-state level of Pol1 protein, so suppression does not appear to be due to an increase in production or stability of Pol1p. Deletion of either PSP gene or both in combination resulted in apparently normal viable cells. While neither gene is homologous to genes with known functions, PSP1 and PSP2 both have unusual amino acid compositions: PSP1 is rich in asparagine and glutamine, while PSP2 is rich in asparagine and contains “RGG” motifs that have been associated with RNA-binding proteins. We also describe a transposon-mediated strategy that should be generally effective for rapid characterization of multicopy suppressors.  相似文献   

7.
Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed β-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of α-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation.  相似文献   

8.
Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (Ay/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficiency lowered body weight, adiposity, hepatic lipid accumulation, and hepatic lipogenic gene expression in all three mouse models. However, glucose tolerance, insulin, and leptin sensitivity were improved by SCD1 deficiency only in Ay/a and DIO mice, but not ob/ob mice. These data uncouple the effects of SCD1 deficiency on weight loss from those on insulin sensitivity and suggest a beneficial effect of SCD1 inhibition on insulin sensitivity in obese mice that express a functional leptin gene.  相似文献   

9.
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans‐Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc‐YR) , which fused the N‐terminus of yeast CHC (1–1312) to the rat CHC residues 1318–1675, including the CHC trimerization region. The novel CHC‐YR allele encoded a stable protein that fractionated as a trimer. CHC‐YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC‐YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc‐YR‐GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1‐GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC‐YR, indicating that Chc‐YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc‐YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non‐trimerization roles for the clathrin LC.  相似文献   

10.
Human chromosomal region 13q14 is a deletion hotspot in prostate cancer, multiple myeloma, and chronic lymphocytic leukemia. This region is believed to host multiple tumor suppressors. Chromosome Condensation 1-like (CHC1L) is located at 13q14, and found within the smallest common region of loss of heterozygosity in prostate cancer. Decreased expression of CHC1L is linked to pathogenesis and progression of both prostate cancer and multiple myeloma. However, there is no direct evidence for CHC1L’s putative tumor suppressing role in current literature. Presently, we describe the generation and characterization of Chc1L knockout mice. Chc1L -/- mice do not develop cancer at a young age, but bone marrow and spleen cells from 8–12 week-old mice display an exaggerated proliferative response. By approximately two years of age, knockout and heterozygote mice have a markedly increased incidence of tumorigenesis compared to wild-type controls, with tumors occurring mainly in the spleen, mesenteric lymph nodes, liver and intestinal tract. Histopathological analysis found that most heterozygote and knockout mice succumb to either Histiocytic Sarcoma or Histiocyte-Associated Lymphoma. Our study suggests that Chc1L is involved in suppression of these two histiocyte-rich neoplasms in mice and supports clinical data suggesting that CHC1L loss of function is an important step in the pathogenesis of cancers containing 13q14 deletion.  相似文献   

11.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

12.
Clathrin-associated protein (AP) complexes have been implicated in the assembly of clathrin coats and the selectivity of clathrin-mediated protein transport processes. We have identified a yeast gene, APS1, encoding a homolog of the small (referred to herein as sigma) subunits of the mammalian AP-1 complex. Sequence comparisons have shown that Aps1p is more similar to the sigma subunit of the Golgi-localized mammalian AP-1 complex than Aps2p, which is more related to the plasma membrane AP-2 sigma subunit. Like their mammalian counterparts, Aps1p and Aps2p are components of distinct, large (> 200 kDa) complexes and a significant portion of the Aps proteins co-fractionate with clathrin-coated vesicles during gel filtration chromatography. Unexpectedly, even though the evolutionary conservation of AP small subunits is substantial (50% identity between mammalian and yeast proteins), disruptions of APS1 (aps1 delta) and APS2 (aps2 delta), individually or in combination, elicit no detectable mutant phenotypes. These data indicate that the Aps proteins are not absolutely required for clathrin-mediated selective protein transport in cells expressing wild type clathrin. However, aps1 delta accentuated the slow growth and alpha-factor pheromone maturation defect of cells carrying a temperature-sensitive allele of clathrin heavy chain (Chc) (chc1-ts). In contrast, aps1 delta did not influence the effects of chc1-ts on vacuolar protein sorting or receptor-mediated endocytosis. The aps2 delta mutation resulted in a slight effect on chc1-ts cell growth but had no additional effects. The growth defect of cells completely lacking Chc was compounded by aps1 delta but not aps2 delta. These results comprise evidence that Aps1p is involved in a subset of clathrin functions at the Golgi apparatus. The effect of aps1 delta on cells devoid of clathrin function suggests that Aps1p also participates in clathrin-independent processes.  相似文献   

13.
We have isolated two high copy, allele-specific suppressors of the temperature sensitivity of mutations in POL1, the gene that encodes the catalytic subunit of DNA polymerase α in the yeast Saccharomyces cerevisiae. Both genes, PSP1 and PSP2, also partially suppressed a mutation in POL3 which encodes DNA polymerase δ, and both also affected a mutation in CDC6, which acts in initiation of DNA replication. Suppression was not general, since ts mutations in several genes unrelated to replication were not affected. PSP1 was partially effective on low-copy-number vectors, while PSP2 required high copy numbers. The presence of suppressing plasmids did not alter the steady-state level of Pol1 protein, so suppression does not appear to be due to an increase in production or stability of Pol1p. Deletion of either PSP gene or both in combination resulted in apparently normal viable cells. While neither gene is homologous to genes with known functions, PSP1 and PSP2 both have unusual amino acid compositions: PSP1 is rich in asparagine and glutamine, while PSP2 is rich in asparagine and contains “RGG” motifs that have been associated with RNA-binding proteins. We also describe a transposon-mediated strategy that should be generally effective for rapid characterization of multicopy suppressors. Received: 20 July 1997 / Accepted: 1 October 1997  相似文献   

14.
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life‐threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non‐iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin‐mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin‐containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.  相似文献   

15.
Clathrin-mediated vesicular transport is important for normal growth of the yeast Saccharomyces cerevisiae. Previously, we identified a genetic locus (SCD1) that influences the ability of clathrin heavy-chain-deficient (Chc-) yeast cells to survive. With the scd1-v allele, Chc- yeast cells are viable but grow poorly; with the scd1-i allele, Chc- cells are inviable. To identify the SCD1 locus and other genes that can rescue chc1 delta scd1-i cells to viability, a multicopy suppressor selection strategy was developed. A strain of scd1-i genotype carrying the clathrin heavy-chain gene under GAL1 control (GAL1:CHC1) was transformed with a YEp24 yeast genomic library, and colonies that could grow on glucose were selected. Plasmids from six distinct genetic loci, none of which encoded CHC1, were recovered. One of the suppressor loci was shown to be UBI4, the polyubiquitin gene. UBI4 rescues only in high copy number and is not allelic to SCD1. The conjugation of ubiquitin to intracellular proteins can mediate their selective degradation. Since UBI4 is required for survival of yeast cells under stress and is induced during starvation, ubiquitin expression in GAL1:CHC1 cells was examined. After a shift to growth on glucose to repress synthesis of clathrin heavy chains, UBI4 mRNA levels were elevated > 10-fold, whereas the quantity of free ubiquitin declined severalfold relative to that of Chc+ cells. In addition, novel higher-molecular-weight ubiquitin conjugates appeared in clathrin-deficient cells. We suggest that higher levels of ubiquitin are required for turnover of mislocalized or improperly processed proteins that accumulate in the absence of clathrin and that ubiquitin may play a general role in turnover of proteins in the secretory or endocytic pathway.  相似文献   

16.
Clathrin-coated vesicles mediate cellular endocytosis of nutrients and molecules that are involved in a variety of biological processes. Basic components of the vesicle coat are clathrin heavy chain (Chc) and clathrin light chain molecules. In Drosophila melanogaster the chc gene function has been analyzed in a number of previous studies mainly using genetic approaches. However, the chc mRNA and protein expression patterns have not been studied systematically. We have generated an antibody that specifically recognizes Chc and we have analyzed chc RNA and protein expression patterns throughout embryonic and larval stages. We found that chc mRNA and protein are highly expressed from early stages of embryogenesis onwards, consistent with genetic studies predicting a maternal contribution of the gene function. During subsequent stages mRNA and protein are co-expressed in all embryonic cells; however we found an up-regulation in specific tissues including the gut, the salivary glands, tracheal system and the epidermis. In addition the central nervous system and the nephrocyte-like garland cells show strong Chc expression at late embryogenesis. In larvae Chc is highly expressed in garland cells, imaginal discs, fat body, salivary glands and the ring gland. Subcellularly, we found Chc protein in a vesicle-like pattern within the cytoplasm and at the plasma membrane. Co-labeling studies show that Chc is partially in contact with the trans-Golgi network and co-localizes with markers for early endocytosis. Together, the antibody may serve as a new tool to study the function of Chc in clathrin-dependent cellular processes, such as endocytosis.  相似文献   

17.
18.
19.
Five proteins (MotA, MotB, FliG, FliM and FliN) may be involved in energizing flagellar rotation inEscherichia coli. To study interactions between the Mot proteins, and between them and the three Fli proteins of the switch-motor complex, we have isolated extragenic suppressors of dominant and partially dominantmotBmissense mutations. Four of the 13motBmutations yielded partially allele-specific suppressors. Of the suppressing mutations, 57 are in themotAgene, eight are infliG, and one is infliM; no suppressor was identified infliN. The prevalence of suppressors infliGsuggests that FliG interacts rather directly with the Mot proteins. The behaviour of cells in tethering and swarm assays indicates that themotAsuppressors are more efficient than thefliGorfliMsuppressors. Some of the suppressing mutations themselves confer distinctive phenotypes inmotB+cells. We propose a model in which mutations affecting residues in or near the putative peptidoglucan-binding region of MotB misalign the stator relative to the rotor. We suggest that most of the suppressors restore motility by introducing compensatory realignments in MotA or FliG.  相似文献   

20.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号