首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraspanins compose a family of structurally related molecules with four transmembrane domains. A total of 33 tetraspanins are present in the human genome, and tetraspanins are also found in plants and certain fungi. A well-known property of tetraspanins is their ability to interact with one another and many other surface proteins, which led to the suggestion that they organize a network of molecular interaction referred to as the 'tetraspanin web', and that they play a role in membrane compartmentalization. Recent studies of the dynamics of these molecules provided important new information that helped refining the models of this 'web'. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of the tetraspanins, in particular in immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epitheliums or vascular development. However, in several examples, the phenotypes of tetraspanin-knockout mice are relatively mild or restricted to a particular organ, despite a wide tissue distribution.  相似文献   

2.
Several viruses encode ion channels that both modulate the trafficking of envelope glycoprotein(s) and stimulate the release of virions from cells. HIV-1 Vpu enhances virion release and inhibits the endosomal accumulation of the viral structural protein Gag. We investigated whether Vpu affects the subcellular distribution of Env as well as Gag. Env and Vpu colocalized with each other, in part within the trans -Golgi network. In the absence of Vpu, Env accumulated more extensively within clathrin-coated endosomal structures. These structures had several features consistent with an endosomal viral assembly domain: they contained Gag, including proteolytically processed viral matrix protein; the tetraspanins CD63 and CD81; the adaptor protein complex AP-3; and AIP1/ALIX, a cellular cofactor for viral budding. These endosomes labelled incompletely with Env derived from the cell surface, suggesting that some Env reaches this compartment without transiting the plasma membrane. Consistent with this, endosomal accumulation of Env was not blocked by dominant-negative Eps15, an inhibitor of AP-2-mediated endocytosis. Although these data are potentially explained by greater endocytosis of mature virions in the absence of Vpu, they also raise the possibility that Vpu inhibits the transport of Env and Gag to late endosomes, leading to viral assembly at the plasma membrane.  相似文献   

3.
4.
Tetraspanins regulate the protrusive activities of cell membrane   总被引:1,自引:0,他引:1  
Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.  相似文献   

5.
Specific spatial arrangements of proteins and lipids are central to the coordination of many biological processes. Tetraspanins have been proposed to laterally organize cellular membranes via specific associations with each other and with distinct integrins. Here, we reveal the presence of tetraspanin-enriched microdomains (TEMs) containing the tetraspanins CD9, CD63, CD81, and CD82 at the plasma membrane. Fluorescence and immunoelectron microscopic analyses document that the surface of HeLa cells is covered by several hundred TEMs, each extending over a few hundred nanometers and containing predominantly two or more tetraspanins. Further, we reveal that the human immunodeficiency virus type 1 (HIV-1) Gag protein, which directs viral assembly and release, accumulates at surface TEMs together with the HIV-1 envelope glycoprotein. TSG101 and VPS28, components of the mammalian ESCRT1 (endosomal sorting complex required for transport), which is part of the cellular extravesiculation machinery critical for HIV-1 budding, are also recruited to cell surface TEMs upon virus expression, suggesting that HIV-1 egress can be gated through these newly mapped microdomains.  相似文献   

6.
The ability of plant pathogenic fungi to infect their host depends on successful penetration into plant tissues. This process often involves the differentiation of a specialized cell, the appressorium. Signalling pathways required for appressorium formation are conserved among fungi. However, the functions involved in appressorium maturation and penetration peg formation are still poorly understood. Recent studies have shown that Pls1 tetraspanins control an appressorial function required for penetration into host plants and are likely conserved among plant pathogenic fungi. Tetraspanins are small membrane proteins widely distributed among ascomycetes and basidiomycetes defining two distinct families; Pls1 tetraspanins are found in both ascomycetes and basidiomycetes and Tsp2 tetraspanins are specific to basidiomycetes. Both fungal tetraspanins families have similar secondary structures shared with animal tetraspanins. Pls1 tetraspanins are present as single genes in genomes of ascomycetes, allowing a unique opportunity to study their function in appressorium mediated penetration. Experimental evidence suggests that Pls1 tetraspanins are required for the formation of the penetration peg at the base of the appressorium, probably through re-establishing cell polarity.  相似文献   

7.
Multiple levels of interactions within the tetraspanin web   总被引:6,自引:0,他引:6  
The tetraspanin web refers to a network of molecular interactions involving tetraspanins and other molecules. Inside the tetraspanin web, small primary complexes containing only one tetraspanin and one specific partner molecule such as CD151/alpha3beta1 integrin and CD9/CD9P-1 (FPRP) can be observed under particular conditions. Here we demonstrate that when cells are lysed with Brij97, the tetraspanins CD151 and CD9 allow and/or stabilize the interaction of their partner molecules with other tetraspanins and that their two partners associate under conditions maintaining tetraspanin/tetraspanin interactions. The tetraspanins were also found to partition into a detergent-resistant membrane environment to which the integrin alpha3beta1 was relocalized upon expression of CD151.  相似文献   

8.
By virtue of their multiple interactions with partner proteins and due to their strong propensity to multimerize, tetraspanins create scaffolds in membranes, recruiting or excluding specific proteins needed for particular cellular processes. We and others have shown that (i) HIV-1 assembles at, and buds through, membrane areas that are enriched in tetraspanins CD9, CD63, CD81 and CD82, and (ii) the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. In the present paper, I review these findings and briefly discuss the results of our ongoing investigations that are aimed at elucidating when and how tetraspanins regulate this fusion process and how such control affects virus spreading. Finally, I give a preview of studies that we have initiated more recently and which aim to delineate exactly when CD81 functions during the replication of another enveloped RNA virus: influenza virus.  相似文献   

9.
The tetraspanin family of membrane glycoproteins is involved in the regulation of cellular development, proliferation, activation, and mobility. We have attempted to predict the structural features of the large extracellular domain of tetraspanins (EC2), which is very important in determining their functional specificity. The tetraspanin EC2 is composed of two subdomains: a conserved three-helix subdomain and a variable secondary structure subdomain inserted within the conserved subdomain. The occurrence of key disulphide bridges and other invariant residues leads to a conserved relative topology of both subdomains and also suggests a structural classification of tetraspanins. Using the CD81 EC2 structure as a template, the structures of two other EC2s were predicted by homology modeling and indicate a conserved shape, in which the variable subdomain is located at one side of the structure. The conserved and variable subdomains might contain sites that correspond, respectively, to common and specific interactions of tetraspanins. The tetraspanin EC2 seems to correspond to a new scheme of fold conservation/variability among proteins, namely the insertion of a structurally variable subdomain within an otherwise conserved fold.  相似文献   

10.
Tetraspanin functions and associated microdomains   总被引:14,自引:0,他引:14  
Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane. Consequently, tetraspanins have been understudied and underappreciated, despite their presence on nearly all cell and tissue types. Important new genetic evidence has now emerged, and is bolstered by new insights into the cell biology, signalling and biochemistry of tetraspanins. These new findings provide a framework for better understanding of these mysterious molecules in the regulation of cellular processes, from signalling to motility.  相似文献   

11.
Cell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and biological response. With the aim of understanding the cellular uptake mechanism of CADY:siRNA complexes, we have combined biochemical, confocal and electron microscopy approaches. In the present work, we provide evidence that the major route for CADY:siRNA cellular uptake involves direct translocation through the membrane but not the endosomal pathway. We have demonstrated that CADY:siRNA complexes do not colocalize with most endosomal markers and remain fully active in the presence of inhibitors of the endosomal pathway. Moreover, neither electrostatic interactions with cell surface heparan sulphates nor membrane potential are essential for CADY:siRNA cell entry. In contrast, we have shown that CADY:siRNA complexes clearly induce a transient cell membrane permeabilization, which is rapidly restored by cell membrane fluidity. Therefore, we propose that direct translocation is the major gate for cell entry of CADY:siRNA complexes. Membrane perturbation and uptake are driven mainly by the ability of CADY to interact with phospholipids within the cell membrane, followed by rapid localization of the complex in the cytoplasm, without affecting cell integrity or viability.  相似文献   

12.
Cationic lipids are used for delivering nucleic acids (lipoplexes) into cells for both therapeutic and biological applications. A better understanding of the identified key-steps, including endocytosis, endosomal escape and nuclear delivery is required for further developments to improve their efficacy. Here, we developed a labelling protocol using aminated nanoparticles as markers for plasmid DNA to examine the intracellular route of lipoplexes in cell lines using transmission electron microscopy. Morphological changes of lipoplexes, membrane reorganizations and endosomal membrane ruptures were observed allowing the understanding of the lipoplex mechanism until the endosomal escape mediated by cationic lipids. The study carried out on two cationic lipids, bis(guanidinium)-tris(2-aminoethyl)amine-cholesterol (BGTC) and dioleyl succinyl paramomycin (DOSP), showed two pathways of endosomal escape that could explain their different transfection efficiencies. For BGTC, a partial or complete dissociation of DNA from cationic lipids occurred before endosomal escape while for DOSP, lipoplexes remained visible within ruptured vesicles suggesting a more direct pathway for DNA release and endosome escape. In addition, the formation of new multilamellar lipid assemblies was noted, which could result from the interaction between cationic lipids and cellular compounds. These results provide new insights into DNA transfer pathways and possible implications of cationic lipids in lipid metabolism.  相似文献   

13.
Inhibition of phagolysosome biogenesis in infected macrophages is a classical pathogenesis determinant of Mycobacterium tuberculosis. In this review we primarily cover the cellular mechanisms of M. tuberculosis phagosome maturation arrest. A detailed picture is beginning to emerge, involving regulators of membrane trafficking in mammalian cells and phagosomal interactions with endosomal organelles and the trans-Golgi network. We also present a hypothesis that overlaps may exist between the mycobacterial interference with the host cell membrane trafficking processes and the targeting of the late endosomal sorting machinery by HIV during viral budding in macrophages. We propose that interference with the endosomal sorting machinery contributes to the synergism between the two significant human diseases--AIDS and tuberculosis.  相似文献   

14.
The endocytic system of kinetoplastid parasites is a highly polarized membrane network focused on the flagellar pocket localized at one end of the cell. When first characterized, the endosomal network was envisioned as a simple system for uptake of extracellular material by fluid-phase or receptor-mediated mechanisms. Subsequently, it has become clear that the kinetoplastid endosomal system has an active and vital role in avoiding the host immune system and virulence, as well as providing the basic functions to fulfil cellular nutritional requirements. In two reviews, recent advances in the definition and comprehension of kinetoplastida endocytosis are discussed and, in Trypanosoma brucei in particular as the more developed experimental system. In Part 1, the endocytic system is considered in context of the surface molecules and their potential roles in virulence.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) infects CD4(+) T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages.  相似文献   

16.
Weber AP  Fischer K 《FEBS letters》2007,581(12):2215-2222
Eukaryotic cells are most fascinating because of their high degree of compartmentation. This is particularly true for plant cells, due to the presence of chloroplasts, photosynthetic organelles of endosymbiotic origin that can be traced back to a single cyanobacterial ancestor. Plastids are major hubs in the metabolic network of plant cells, their metabolism being heavily intertwined with that of the cytosol and of other organelles. Solute transport across the plastid envelope by metabolite transporters is key to integrating plastid metabolism with that of other cellular compartments. Here, we review the advances in understanding metabolite transport across the plastid envelope membrane.  相似文献   

17.
Asymmetric organization of the plasma membrane and cytosolic organelles is fundamental for a variety of cells, including bacteria, yeast and eukaryotic cells (Nelson, 1992). The degree into which cells polarize is characterized by their ability to create and maintain morphologically and biochemically distinct plasma membrane domains. The generation and maintenance of polarized distribution of membrane components (proteins and lipids) is thus critical to the ability of cells to perform complex activities such as cell-to-cell interactions, vectorial transport and secretion, cellular immunity, development and morphogenesis. Modification of cellular polarity may potentially lead to abnormal cellular activities and various pathological disorders (Molitoris, 1991; Carone et al., 1994; Chen et al., 1995). Our review shows the complex interplay between membrane proteins and the cytoskeletal network in determining the "polarized phenotype" in the cell. We provide evidence that membrane/cytoskeleton interaction is the key to regulation of the vast majority of cellular functions.  相似文献   

18.
While the cell imposes multiple barriers to virus entry, enveloped viruses are remarkably still able to gain entry to their cellular hosts by hitchhiking and remodeling the endomembrane system to traffic within, and eventually escape from, endosomal organelles for their genome release. Elucidating viral entry mechanisms and their interaction with the host trafficking network is necessary for antiviral therapy. Here, we focus on the use of host autophagy molecular factors during the entry of prototypic negative-stranded RNA viruses, and highlight recent progress in our understanding of the role of one such factor, UVRAG, in both viral and cellular endocytic membrane trafficking and fusion events.  相似文献   

19.
Multivesicular body (MVB) formation is the result of invagination and budding of the endosomal limiting membrane into its intralumenal space. These intralumenal vesicles (ILVs) contain a subset of endosomal transmembrane cargoes destined for degradation within the lysosome, the result of active selection during MVB sorting. Membrane bending and scission during ILV formation is topologically similar to cytokinesis in that both events require the abscission of a membrane neck that is oriented away from the cytoplasm. The endosomal sorting complexes required for transport (ESCRTs) represent cellular machinery whose function makes essential contributions to both of these processes. In particular, the AAA-ATPase Vps4 and its substrate ESCRT-III are key components that seem to execute the membrane abscission reaction. This review summarizes current knowledge about the Vps4-ESCRT-III system and discusses a model for how the recruitment of Vps4 to the different sites of function might be regulated.  相似文献   

20.
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non‐alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号