首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein glycosylation (e.g., N-linked glycosylation) is known to play an essential role in both cellular functions and secretory pathways; however, our knowledge of in vivo N-glycosylated sites is very limited for the majority of fungal organisms including Aspergillus niger. Herein, we present the first extensive mapping of N-glycosylated sites in A. niger by applying an optimized solid phase glycopeptide enrichment protocol using hydrazide-modified magnetic beads. The enrichment protocol was initially optimized using both mouse blood plasma and A. niger secretome samples, and it was demonstrated that the protein-level enrichment protocol offered superior performance over the peptide-level protocol. The optimized protocol was then applied to profile N-glycosylated sites from both the secretome and whole cell lysates of A. niger. A total of 847 N-glycosylated sites from 330 N-glycoproteins (156 proteins from the secretome and 279 proteins from whole cells) were confidently identified by LC-MS/MS. The identified N-glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, and storage vacuoles, supporting the important role of N-glycosylation in the secretory pathways. In addition, these glycoproteins are involved in many biological processes including gene regulation, signal transduction, protein folding and assembly, protein modification, and carbohydrate metabolism. The extensive coverage of N-glycosylated sites and the observation of partial glycan occupancy on specific sites in a number of enzymes provide important initial information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.  相似文献   

2.
自行设计了抗肿瘤转移多肽-三聚β肽(β3),人工合成了β3的基因片段,构建了β3的表达质粒pET-His-β3,在大肠杆菌BL21(DE3)plysS中表达。在用IPTG诱导15h后可见明显的His-β3融合蛋白的表达,表达产物约占细胞总蛋白的4%,占细胞总不溶性蛋白的10%。每升pET-His-β3/BL21(DE3)plysS细菌培养液用金属螯合琼脂糖凝胶6B FF分离后可回收纯度为92.2%的β3产物约20mg。所表达出的β3肽对人肝癌细胞株SMMC-7721细胞及人肝癌高转移细胞株HCCLM6细胞与纤连蛋白(fibronectin, FN)粘附具有特异的抑制作用,呈现剂量效应相关关系和时间效应相关关系,抑制作用强于β肽(β1)、3倍浓度的β1(3×β1)和GRGDS。研究结果表明:pET-His-β3/BL21(DE3)plysS是β3适合的表达系统;表达的β3肽具有特异的抗肿瘤细胞粘附作用。  相似文献   

3.

Background

Dysregulation of glycoproteins is closely related with many diseases. Quantitative proteomics methods are powerful tools for the detection of glycoprotein alterations. However, in almost all quantitative glycoproteomics studies, trypsin is used as the only protease to digest proteins. This conventional method is unable to quantify N-glycosites in very short or long tryptic peptides and so comprehensive glycoproteomics analysis cannot be achieved.

Methods

In this study, a comprehensive analysis of the difference of N-glycoproteome between hepatocellular carcinoma (HCC) and normal human liver tissues was performed by an integrated workflow combining the multiple protease digestion and solid phase based labeling. The quantified N-glycoproteins were analyzed by GoMiner to obtain a comparative view of cellular component, biological process and molecular function.

Results/conclusions

An integrated workflow was developed which enabled the processes of glycoprotein coupling, protease digestion and stable isotope labeling to be performed in one reaction vessel. This workflow was firstly evaluated by analyzing two aliquots of the same protein extract from normal human liver tissue. It was demonstrated that the multiple protease digestion improved the glycoproteome coverage and the quantification accuracy. This workflow was further applied to the differential analysis of N-glycoproteome of normal human liver tissue and that with hepatocellular carcinoma. A total of 2,329 N-glycosites on 1,052 N-glycoproteins were quantified. Among them, 858 N-glycosites were quantified from more than one digestion strategy with over 99% confidence and 1,104 N-glycosites were quantified from only one digestion strategy with over 95% confidence. By comparing the GoMiner results of the N-glycoproteins with and without significant changes, the percentage of membrane and secreted proteins and their featured biological processes were found to be significant different revealing that protein glycosylation may play the vital role in the development of HCC.  相似文献   

4.
Shen C  Yu Y  Li H  Yan G  Liu M  Shen H  Yang P 《Proteomics》2012,12(12):1917-1927
Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis.  相似文献   

5.
Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non–small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6β4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.  相似文献   

6.
Objective: CA125/MUC16 is an O-glycosylated protein that is expressed on the surfaces of ovarian epithelial cells. This molecule is a widely used tumor-associated marker for diagnosis of ovarian cancer. Recently, CA125 was shown to be involved in ovarian cancer metastasis. The purpose of this study was to investigate the mechanism of CA125 during ovarian cancer metastasis.Methods: We analyzed the Oncomine and CSIOVDB databases to determine the expression levels of DKK1 in ovarian cancer. DKK1 expression levels were upregulated or downregulated and applied with CA125 to Transwell and Western blot assays to ascertain the underlying mechanism by which CA125 stimulates cell migration via the SGK3/FOXO3 pathway. Anti-mesothelin antibodies (anti-MSLN) were used to block CA125 stimulation. Then the expression levels of DKK1were tested by enzyme-linked immunosorbent assay (ELISA) to eliminate the blocking effect of anti-MSLN to CA125 stimulation. Xenograft mouse models were used to detect the effects of CA125 and anti-MSLN on ovarian cancer metastasis in vivo.Results: DKK1 levels were downregulated in ovarian tumor tissues according to the analyses of two databases and significantly correlated with FIGO stage, grade and disease-free survival in ovarian cancer patients. DKK1 levels were downregulated by CA125 stimulation in vitro. Overexpression of DKK1 reversed the ability of exogenous CA125 to mediate cell migration by activating the SGK3/FOXO3 signaling pathway. Anti-MSLN abrogated the DKK1 reduction and increased the apoptosis of ovarian cancer cells. The use of anti-MSLN in xenograft mouse models significantly reduced tumor growth and metastasis accelerated by CA125.Conclusions: These experiments revealed that the SGK3/FOXO3 pathway was activated, wherein decreased expression of DKK1 was caused by CA125, which fuels ovarian cancer cell migration. Mesothelin is a potential therapeutic target for the treatment of ovarian cancer metastasis.  相似文献   

7.
Ralhan R  Masui O  Desouza LV  Matta A  Macha M  Siu KW 《Proteomics》2011,11(12):2363-2376
In search of blood-based biomarkers that would enhance the ability to diagnose head and neck/oral squamous cell carcinoma (HNOSCC) in early stages or predict its prognosis, we analyzed the HNOSCC secretome (ensemble of proteins secreted and/or shed from the tumor cells) for potential biomarkers using proteomic technologies. LC-MS/MS was used to identify proteins in the conditioned media of four HNOSCC cell lines (SCC4, HSC2, SCC38, and AMOSIII); 140 unique proteins were identified on the basis of 5% global false discovery rate, 122 of which were secretory proteins, with 29 being previously reported to be overexpressed in HNOSCC in comparison to normal head and neck tissues. Of these, five proteins including α-enolase, peptidyl prolyl isomerase A/cyclophilin A, 14-3-3 ζ, heterogeneous ribonucleoprotein K, and 14-3-3 σ were detected in the sera of HNOSCC patients by Western blot analysis. Our study provides the evidence that analysis of head and neck cancer cells' secretome is a viable strategy for identifying candidate serological biomarkers for HNOSCC. In future, these biomarkers may be useful in predicting the likelihood of transformation of oral pre-malignant lesions, prognosis of HNOSCC patients and evaluate response to therapy using minimally invasive tests.  相似文献   

8.
Yao L  Zhang Y  Chen K  Hu X  Xu LX 《PloS one》2011,6(9):e24684

Background

Resistance to chemotherapy is the major cause of failure in breast cancer treatment. Recent studies suggest that secreted proteins may play important roles in chemoresistance. We sought to systematically characterize secreted proteins associated with drug resistance, which may represent potential serum biomarkers or novel drug targets.

Methodology/Principal Findings

In the present work, we adopted the proteomic strategy of one-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry to compare the secretome of MCF-7 and doxorubicin-resistant MCF-7/Dox. A total of 2,084 proteins were identified with at least two unique peptides in the conditioned media of two cell lines. By quantification with label-free spectral counting, 89 differentially expressed secreted proteins (DESPs) between the two cell lines were found. Among them, 57 DESPs were first found to be related to doxorubicin resistance in this work, including 24 extracellular matrix related proteins, 2 cytokines and 31 unclassified proteins. We focused on 13 novel DESPs with confirmed roles in tumor metastasis. Among them, the elevated expression of IL-18 in doxorubicin-resistant cell lines and breast tumor tissues was validated and its role in doxorubicin resistance was further confirmed by cell viability experiments in the presence or absence of this protein.

Conclusions/Significance

Comparative analysis of the secretome of MCF-7 and MCF-7/Dox identified novel secreted proteins related to chemotherapy resistance. IL-18 was further validated to contribute to doxorubicin resistance, in addition to its confirmed role in breast cancer metastasis. Due to its dual roles in both drug resistance and tumor metastasis, IL-18 may represent a useful drug target for breast cancer therapy.  相似文献   

9.
In principle, targeted therapies have optimal activity against a specific subset of tumors that depend upon the targeted molecule or pathway for growth, survival, or metastasis. Consequently, it is important in drug development and clinical practice to have predictive biomarkers that can reliably identify patients who will benefit from a given therapy. We analyzed tumor cell-line secretomes (conditioned cell media) to look for predictive biomarkers; secretomes represent a potential source for potential biomarkers that are expressed in intracellular signaling and therefore may reflect changes induced by targeted therapy. Using Gene Ontology, we classified by function the secretome proteins of 12 tumor cell lines of different histotypes. Representations and hierarchical relationships among the functional groups differed among the cell lines. Using bioinformatics tools, we identified proteins involved in intracellular signaling pathways. For example, we found that secretome proteins related to TGF-beta signaling in thyroid cancer cells, such as vasorin, CD109, and βIG-H3 (TGFBI), were sensitive to RPI-1 and dasatinib treatments, which have been previously demonstrated to be effective in blocking cell proliferation. The secretome may be a valuable source of potential biomarkers for detecting cancer and measuring the effectiveness of cancer therapies.  相似文献   

10.
For successful therapy, hepatocellular carcinoma (HCC) must be detected at an early stage. Herein, we used a proteomic approach to analyze the secretory/releasing proteome of HCC tissues to identify plasma biomarkers. Serum-free conditioned media (CM) were collected from primary cultures of cancerous tissues and surrounding noncancerous tissues. Proteomic analysis of the CM proteins permitted the identification of 1365 proteins. The enriched molecular functions and biological processes of the CM proteins, such as hydrolase activity and catabolic processes, were consistent with the liver being the most important metabolic organ. Moreover, 19% of the proteins were characterized as extracellular or membrane-bound. For validation, secretory proteins involved in transforming growth factor-β signaling pathways were validated in plasma samples. Alphafetoprotein (AFP), metalloproteinase (MMP)1, osteopontin (OPN), and pregnancy-specific beta-1-glycoprotein (PSG)9 were significantly increased in HCC patients. The overall performance of MMP1 and OPN in the diagnosis of HCC remained greater than that of AFP. In addition, this study represents the first report of MMP1 as a biomarker with a higher sensitivity and specificity than AFP. Thus, this study provides a valuable resource of the HCC secretome with the potential to investigate serological biomarkers. MMP1 and OPN could be used as novel biomarkers for the early detection of HCC and to improve the sensitivity of biomarkers compared with AFP.  相似文献   

11.
12.
13.
Secreted proteins, collectively referred to as the secretome, were suggested as valuable biomarkers in disease diagnosis and prognosis. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsically low abundance; they are frequently masked by the released proteins from lysed cells and the substantial amounts of serum proteins used in culture medium. The hollow fiber culture (HFC) system is a commercially available system composed of small fibers sealed in a cartridge shell; cells grow on the outside of the fiber. Recently, because this system can help cells grow at a high density, it has been developed and applied in a novel analytical platform for cell secretome collection in cancer biomarker discovery. This article focuses on the advantages of the HFC system, including the effectiveness of the system for collection of secretomes, and reviews the process of cell secretome collection by the HFC system and proteomic approaches to discover cancer biomarkers. The HFC system not only provides a high-density three-dimensional (3D) cell culture system to mimic tumor growth conditions in vivo but can also accommodate numerous cells in a small volume, allowing secreted proteins to be accumulated and concentrated. In addition, cell lysis rates can be greatly reduced, decreasing the amount of contamination by abundant cytosolic proteins from lysed cells. Therefore, the HFC system is useful for preparing a wide range of proteins from cell secretomes and provides an effective method for collecting higher amounts of secreted proteins from cancer cells. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

14.
Despite major improvements on the knowledge and clinical management, cancer is still a deadly disease. Novel biomarkers for better cancer detection, diagnosis and treatment prediction are urgently needed. Proteins secreted, shed or leaking from the cancer cell, collectively termed the cancer secretome, are promising biomarkers since they might be detectable in blood or other biofluids. Furthermore, the cancer secretome in part represents the tumor microenvironment that plays a key role in tumor promoting processes such as angiogenesis and invasion. The cancer secretome, sampled as conditioned medium from cell lines, tumor/tissue interstitial fluid or tumor proximal body fluids, can be studied comprehensively by nanoLC-MS/MS-based approaches. Here, we outline the importance of current cancer secretome research and describe the mass spectrometry-based analysis of the secretome. Further, we provide an overview of cancer secretome research with a focus on the three most common cancer types: lung, breast and colorectal cancer. We conclude that the cancer secretome research field is a young, but rapidly evolving research field. Up to now, the focus has mainly been on the discovery of novel promising secreted cancer biomarker proteins. An interesting finding that merits attention is that in cancer unconventional secretion, e.g. via vesicles, seems increased. Refinement of current approaches and methods and progress in clinical validation of the current findings are vital in order to move towards applications in cancer management. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

15.
Luo X  Liu Y  Wang R  Hu H  Zeng R  Chen H 《Journal of Proteomics》2011,74(4):528-538
Cancer secretomes are a promising source for biomarker discovery. The analysis of cancer secretomes still faces some difficulties mainly related to the intracellular contamination, which hinders the qualification and follow-up validations. This study aimed to establish a high-quality secretome of A549 cells by using the cellular proteome as a reference and to test the merits of this refined secretome for biomarker discovery for non-small cell lung cancer (NSCLC). Using one-dimensional gel electrophoresis followed by liquid-chromatography tandem mass spectrometry, we comprehensively investigated the secretome and the concurrent cellular proteome of A549 cells. A high-quality secretome consisting of 382 proteins was refined from 889 initial secretory proteins. More than 85.3% of proteins were annotated as secreted and 76.8% as extracellular or membrane-bound. The discriminative power of the lung-cancer associated secretome was confirmed by gene expression and serum proteomic data. The elevated level of C4b-binding Protein (C4BP) in NSCLC blood was verified by enzyme-linked immunosorbent assays (ELISA, p = 6.07e-6). Moreover, the serum C4BP level in 89 patients showed a strong association with the clinical staging of NSCLC. Our reference-experiment-driven strategy is simple and widely applicable, and may facilitate the identification of novel promising biomarkers of lung cancer.  相似文献   

16.
《Autophagy》2013,9(1):60-74
Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as surrogates for intracellular autophagy dynamics in tumor cells.  相似文献   

17.
Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis.  相似文献   

18.
Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as surrogates for intracellular autophagy dynamics in tumor cells.  相似文献   

19.
Wu CC  Chen HC  Chen SJ  Liu HP  Hsieh YY  Yu CJ  Tang R  Hsieh LL  Yu JS  Chang YS 《Proteomics》2008,8(2):316-332
The cancer cell secretome may contain many potentially useful biomarkers. We therefore sought to identify proteins in the conditioned media of colorectal carcinoma (CRC) cell lines but not in those from other cancer cell lines. The secretomes of 21 cancer cell lines derived from 12 cancer types were analyzed by SDS-PAGE combined with MALDI-TOF MS. Among the 325 proteins identified, collapsin response mediator protein-2 (CRMP-2) was chosen for evaluation as a potential CRC biomarker, since it was selectively detected in the CRC cell line secretome and has never been reported as a cancer biomarker. Immunohistochemical analysis of 169 CRC specimens showed that CRMP-2 was positively detected in 58.6% of the tumors, but weakly or not detected in >90% of the adjacent nontumor epithelial cells. Moreover, the CRMP-2-positive rate was significantly increased in earlier stage tumors and lymph node metastasis. Plasma CRMP-2 levels were significantly higher in CRC patients (N = 201) versus healthy controls (N = 201) (61.3 +/- 34.6 vs. 40.2 +/- 24.3 ng/mL, p = 0.001). Our results indicate that comparative analysis of cancer cell secretome is a feasible strategy for identifying potential cancer biomarkers, and that CRMP-2 may be a novel CRC biomarker.  相似文献   

20.
Identifying novel cancer biomarkers is important for early cancer detection as it can reduce mortality rates. The cancer secretome, the collection of all macromolecules secreted by a tumor cell, alters its composition compared to normal tissue, and this change plays an important role in the observation of cancer progression. The collection and accurate analysis of cancer secretomes could lead to the discovery of novel biomarkers, thus improving outcomes of cancer treatment. We unexpectedly discovered that enzyme-instructed self-assembly (EISA) of a D-peptide hydrogelator results in nanonets/hydrogel around cancer cells that overexpress ectophosphatases. Here we show that these nanonets are able to rapidly collect proteins in the pericellular space (i.e., near the surface) of cancer cells. Because the secretory substances are at their highest concentration near the cell surface, the use of pericellular nanonets to collect the cancer secretome maximizes the yield and quality of samples, reduces pre-analytical variations, and allows the dynamic profiling of secretome samples. Thus, this new approach has great potential in identifying the heterotypic signaling in tumor microenvironments thereby improving the understanding of tumor microenvironments and accelerating the discovery of potential biomarkers in cancer biology. Data are available via ProteomeXchange with identifier PXD003924.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号