首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.  相似文献   

2.
Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures "linear invadosomes." Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes.  相似文献   

3.
Cell transformation by Rous sarcoma virus results in a dramatic change of adhesion structures with the substratum. Adhesion plaques are replaced by dot-like attachment sites called podosomes. Podosomes are also found constitutively in motile nontransformed cells such as leukocytes, macrophages, and osteoclasts. They are represented by columnar arrays of actin which are perpendicular to the substratum and contain tubular invaginations of the plasma membrane. Given the similarity of these tubules to those generated by dynamin around a variety of membrane templates, we investigated whether dynamin is present at podosomes. Immunoreactivities for dynamin 2 and for the dynamin 2-binding protein endophilin 2 (SH3P8) were detected at podosomes of transformed cells and osteoclasts. Furthermore, GFP wild-type dynamin 2aa was targeted to podosomes. As shown by fluorescence recovery after photobleaching, GFP-dynamin 2aa and GFP-actin had a very rapid and similar turnover at podosomes. Expression of the GFP-dynamin 2aa(G273D) abolished podosomes while GFP-dynamin(K44A) was targeted to podosomes but delayed actin turnover. These data demonstrate a functional link between a member of the dynamin family and actin at attachment sites between cells and the substratum.  相似文献   

4.
Invadosomes have two main functions represented by their actin-rich and adhesive components and their polarized secretory pathways controlling the delivery of metalloproteases necessary to degrade extracellular matrix (ECM). Invadosomes include invadopodia and podosomes, which have subtle differences in molecular composition, dynamics, and structure. These differences could reflect different stages of invadosome maturation. This review will outline current knowledge on the coupling between the acto-adhesive machinery and the ECM degradation activity in invadosome diversity. Multiple works support that these two functions are not automatically linked but seem to be finely regulated to allow different functions of invadosomes. We will explore the paradigmatic aspect of invadosomes, which are able to interact with ECM to degrade it so as to better control their own dynamics. Understanding the fine-tuning between these two functions could serve to understand the link between the different types of invadosomes from invadopodia to podosomes.  相似文献   

5.
Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment.  相似文献   

6.
Invadosomes have two main functions represented by their actin-rich and adhesive components and their polarized secretory pathways controlling the delivery of metalloproteases necessary to degrade extracellular matrix (ECM). Invadosomes include invadopodia and podosomes, which have subtle differences in molecular composition, dynamics, and structure. These differences could reflect different stages of invadosome maturation. This review will outline current knowledge on the coupling between the acto-adhesive machinery and the ECM degradation activity in invadosome diversity. Multiple works support that these two functions are not automatically linked but seem to be finely regulated to allow different functions of invadosomes. We will explore the paradigmatic aspect of invadosomes, which are able to interact with ECM to degrade it so as to better control their own dynamics. Understanding the fine-tuning between these two functions could serve to understand the link between the different types of invadosomes from invadopodia to podosomes.  相似文献   

7.
Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.  相似文献   

8.
Ectopic expression of a constitutive active mutant of the GTPase Cdc42 (V12Cdc42) in vascular endothelial cells triggers the dissolution of stress fibres and focal adhesion contacts and causes the repolymerisation of actin into dots. Each punctate structure consists of an F-actin core surrounded by a vinculin ring, consistent with the definition of podosomes. We now report further analysis of these complexes and show the presence of established podosomal markers such as cortactin, gelsolin, dynamin, N-WASP, and Arp2/3 which are absent in focal adhesions. Endothelial podosomes appear as randomly distributed conical structures, distributed on, but restricted to, the ventral membrane and confined to contact sites between cells and their substratum. The nature of the extracellular matrix does not influence podosome formation nor their spatial organisation. Induction of podosomes in response to V12Cdc42 is not associated with a migratory nor with a proliferative phenotype. These results add endothelial cells to the list of cell types endowed with the ability to form podosomes in vitro and raise the possibility that endothelial cells could form such structures under certain physiological or pathological conditions.  相似文献   

9.
Invadosomes are adhesive mechanosensory modules composed of a dense F-actin core surrounded by a ring of adhesion molecules and able to infiltrate compact tissue environment in physiological and pathological conditions. These structures comprise podosomes that are found in a variety of cells under physiological conditions and invadopodia in transformed or cancer cells. Invadosomes are regulated by extracellular matrix signals and are endowed with degradative machinery for extracellular matrix. The ability of extracellular matrix signals to orchestrate the building, dynamics, and function of invadosomes is based on mechano-chemical integrin outside-in signaling and requires integrin cross-talk. This review highlights recent findings that place Src as an inducer and PKC as an amplifier in the assembly of integrin stimulated invadosome through mechanotransduction and polarized endo/exocytic trafficking pathways for key proteolytic and enzymatic activities in a temporally and spatially confined manner.  相似文献   

10.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a pathogen of lepidopteran insects, has a striking dependence on the host cell actin cytoskeleton. During the delayed-early stage of infection, AcMNPV was shown to induce the accumulation of actin at the cortex of infected cells. However, the dynamics and molecular mechanism of cortical actin assembly remained unknown. Here, we show that AcMNPV induces dynamic cortical clusters of dot-like actin structures that mediate degradation of the underlying extracellular matrix and therefore function similarly to clusters of invadosomes in mammalian cells. Furthermore, we find that the AcMNPV protein actin-rearrangement-inducing factor-1 (ARIF-1), which was previously shown to be necessary and sufficient for cortical actin assembly and efficient viral infection in insect hosts, is both necessary and sufficient for invadosome formation. We mapped the sequences within the C-terminal cytoplasmic region of ARIF-1 that are required for invadosome formation and identified individual tyrosine and proline residues that are required for organizing these structures. Additionally, we found that ARIF-1 and the invadosome-associated proteins cortactin and the Arp2/3 complex localize to invadosomes and Arp2/3 complex is required for their formation. These ARIF-1–induced invadosomes may be important for the function of ARIF-1 in systemic virus spread.  相似文献   

11.
Invadosomes are actin-rich adhesion structures involved in tissue invasion and extracellular matrix (ECM) remodelling. αII-Spectrin, an ubiquitous scaffolding component of the membrane skeleton and a partner of actin regulators (ABI1, VASP and WASL), accumulates highly and specifically in the invadosomes of multiple cell types, such as mouse embryonic fibroblasts (MEFs) expressing SrcY527F, the constitutively active form of Src or activated HMEC-1 endothelial cells. FRAP and live-imaging analysis revealed that αII-spectrin is a highly dynamic component of invadosomes as actin present in the structures core. Knockdown of αII-spectrin expression destabilizes invadosomes and reduces the ability of the remaining invadosomes to digest the ECM and to promote invasion. The ECM degradation defect observed in spectrin-depleted-cells is associated with highly dynamic and unstable invadosome rings. Moreover, FRAP measurement showed the specific involvement of αII-spectrin in the regulation of the mobile/immobile β3-integrin ratio in invadosomes. Our findings suggest that spectrin could regulate invadosome function and maturation by modulating integrin mobility in the membrane, allowing the normal processes of adhesion, invasion and matrix degradation. Altogether, these data highlight a new function for spectrins in the stability of invadosomes and the coupling between actin regulation and ECM degradation.  相似文献   

12.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

13.
Podosomes and invadopodia, collectively termed invadosomes, are adhesive and degradative membrane structures formed in many types of cells and are well known for recruiting various proteases. However, another major class of degradative enzymes, deoxyribonuclease (DNase), remains unconfirmed and not studied in invadosomes. Here, using surface-immobilized nuclease sensor (SNS), we demonstrated that invadosomes recruit DNase to their core regions, which degrade extracellular double-stranded DNA. We further identified the DNase as GPI-anchored membrane-bound DNase X. DNase recruitment is ubiquitous and consistent in invadosomes of all tested cell types. DNase activity exhibits within a minute after actin nucleation, functioning concomitantly with protease in podosomes but preceding it in invadopodia. We further showed that macrophages form DNase-active podosome rosettes surrounding bacteria or micropatterned antigen islets, and the podosomes directly degrade bacterial DNA on a surface, exhibiting an apparent immunological function. Overall, this work reports DNase in invadosomes for the first time, suggesting a richer arsenal of degradative enzymes in invadosomes than known before.  相似文献   

14.
Adhesion and movement ofAmoeba proteusare both dependent on the appropriate arrangement of the F-actin cytoskeleton and on the presence of the cell nucleus. In this study the F-actin organization was examined by routine FITC-phalloidin staining and confocal laser microscopy in intact amoebae and in their nucleated and anucleated fragments, at different levels of cell adherence to the substratum. In the adhering and migrating intact cells and nucleated cell fragments dot-like aggregates of F-actin are scattered over the ventral side at sites close to the substratum. In the case of de-adhesion of nucleated specimens this pattern disappears and F-actin is accumulated in the cell centre and/or dispersed in the cytoplasm. The same actin distribution, without ventral dots, is found in the anucleated fragments which usually fail to attach to the substratum. Re-adhesion of anucleated fragments, induced by a modified substratum or spontaneous, is accompanied by restoration of actin dots at the lower cell side. It is concluded that: (1) adhering specimens ofA. proteusdisplay the same dot-like actin pattern on the ventral cell side, as many metazoan motile cells; (2) organization or disorganization of this pattern may occur independently of the presence of the cell nucleus, under the control of cell adhesion to the substratum.  相似文献   

15.
Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2''s action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.  相似文献   

16.
Endocytosis is critical for many cellular functions. We show that endocytosis of the common gammac cytokine receptor is clathrin independent by using a dominant-negative mutant of Eps15 or RNA interference to knock down clathrin heavy chain. This pathway is synaptojanin independent and requires the GTPase dynamin. In addition, this process requires actin polymerization. To further characterize the function of dynamin in clathrin-independent endocytosis, in particular its connection with the actin cytoskeleton, we focused on dynamin-binding proteins that interact with F-actin. We compared the involvement of these proteins in the clathrin-dependent and -independent pathways. Thus, we observed that intersectin, syndapin, and mAbp1, which are necessary for the uptake of transferrin (Tf), a marker of the clathrin route, are not required for gammac receptor endocytosis. Strikingly, cortactin is needed for both gammac and Tf internalizations. These results reveal the ubiquitous action of cortactin in internalization processes and suggest its role as a linker between actin dynamics and clathrin-dependent and -independent endocytosis.  相似文献   

17.
Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.  相似文献   

18.
Actin polymerization plays a critical role in clathrin-mediated endocytosis in many cell types, but how polymerization is regulated is not known. Hip1R may negatively regulate actin assembly during endocytosis because its depletion increases actin assembly at endocytic sites. Here, we show that the C-terminal proline-rich domain of Hip1R binds to the SH3 domain of cortactin, a protein that binds to dynamin, actin filaments and the Arp2/3 complex. We demonstrate that Hip1R deleted for the cortactin-binding site loses its ability to rescue fully the formation of abnormal actin structures at endocytic sites induced by Hip1R siRNA. To determine when this complex might function during endocytosis, we performed live cell imaging. The maximum in vivo recruitment of Hip1R, clathrin and cortactin to endocytic sites was coincident, and all three proteins disappeared together upon formation of a clathrin-coated vesicle. Finally, we showed that Hip1R inhibits actin assembly by forming a complex with cortactin that blocks actin filament barbed end elongation.  相似文献   

19.
The actin-filament associated protein (AFAP) family of adaptor proteins consists of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best described as a cSrc binding partner and actin cross-linking protein. A homology search of AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and cellular localization; however, based upon sequence variations, AFAP1L1 is hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin filaments and move to punctate actin structures and colocalize with cortactin, consistent with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the ability to induce podosome formation and move to podosomes without stimulation. Immunohistochemical analysis of AFAP1L1 in human tissues shows differential expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin filaments and bridging interactions with binding partners, but we hypothesize that AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and these interactions may allow AFAP1L1 to affect invadosome formation.  相似文献   

20.
Podosomes are punctate adhesion structures first described in osteoclasts and next found in src-transformed cells of mesenchymal origin. Podosomes were never observed in cultured epithelial cells where cell-matrix adhesion structures were represented only by focal contacts and hemidesmosomes interacting with microfilaments and intermediate filaments, respectively. Rat bladder carcinoma cells and normal human keratinocytes showed that hemidesmosome-like structures are organized around a core of actin filaments that appears early during cell adhesion and looks similar to those of podosomes described in cells of mesenchymal origin. The epithelial podosome-like structures specifically contain Arp2/3 complex, cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin and zyxin. The maintenance of the F-actin core and the surrounding hemidesmosomes depends on actin polymerization, src family kinases and Grb2, but not on microtubular integrity. Thus, podosomes are not unique to cells of mesenchymal origin, but also appear in epithelial cells where they may take part in regulating basement membrane adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号