首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japanese encephalitis (JE) is a significant cause of human morbidity and mortality throughout Asia and Africa. Vaccines have reduced the incidence of JE in some countries, but no specific antiviral therapy is currently available. The NS3 protein of Japanese encephalitis virus (JEV) is a multifunctional protein combining protease, helicase and nucleoside 5'-triphosphatase (NTPase) activities. The crystal structure of the catalytic domain of this protein has recently been solved using a roentgenographic method. This enabled structure-based virtual screening for novel inhibitors of JEV NS3 helicase/NTPase. The aim of the present research was to identify novel potent medicinal substances for the treatment of JE. In the first step of studies, the natural ligand ATP and two known JEV NS3 helicase/NTPase inhibitors were docked to their molecular target. The refined structure of the enzyme was used to construct a pharmacophore model for JEV NS3 helicase/NTPase inhibitors. The freely available ZINC database of lead-like compounds was then screened for novel inhibitors. About 1 161 000 compounds have been screened and 15 derivatives of the highest scores have been selected. These compounds were docked to the JEV NS3 helicase/NTPase to examine their binding mode and verify screening results by consensus scoring procedure.  相似文献   

2.
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.  相似文献   

3.
High-throughput screening (HTS) has become an integral part of academic and industrial efforts aimed at developing new chemical probes and drugs. These screens typically generate several 'hits', or lead active compounds, that must be prioritized for follow-up medicinal chemistry studies. Among primary considerations for ranking lead compounds is selectivity for the intended target, especially among mechanistically related proteins. Here, we show how the chemical proteomic technology activity-based protein profiling (ABPP) can serve as a universal assay to rank HTS hits based on their selectivity across many members of an enzyme superfamily. As a case study, four metalloproteinase-13 (MMP13) inhibitors of similar potency originating from a publically supported HTS and reported in PubChem were tested by ABPP for selectivity against a panel of 27 diverse metalloproteases. The inhibitors could be readily separated into two groups: (1) those that were active against several metalloproteases and (2) those that showed high selectivity for MMP13. The latter set of inhibitors was thereby designated as more suitable for future medicinal chemistry optimization. We anticipate that ABPP will find general utility as a platform to rank the selectivity of lead compounds emerging from HTS assays for a wide variety of enzymes.  相似文献   

4.
5.

Background

Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in South and South-East Asia. Lack of antivirals and non-availability of affordable vaccines in these endemic areas are a major setback in combating JEV and other closely related viruses such as West Nile virus and dengue virus. Protein secondary structure mimetics are excellent candidates for inhibiting the protein-protein interactions and therefore serve as an attractive tool in drug development. We synthesized derivatives containing the backbone of naturally occurring lupin alkaloid, sparteine, which act as protein secondary structure mimetics and show that these compounds exhibit antiviral properties.

Methodology/Principal Findings

In this study we have identified 3,7-diazabicyclo[3.3.1]nonane, commonly called bispidine, as a privileged scaffold to synthesize effective antiviral agents. We have synthesized derivatives of bispidine conjugated with amino acids and found that hydrophobic amino acid residues showed antiviral properties against JEV. We identified a tryptophan derivative, Bisp-W, which at 5 µM concentration inhibited JEV infection in neuroblastoma cells by more than 100-fold. Viral inhibition was at a stage post-entry and prior to viral protein translation possibly at viral RNA replication. We show that similar concentration of Bisp-W was capable of inhibiting viral infection of two other encephalitic viruses namely, West Nile virus and Chandipura virus.

Conclusions/Significance

We have demonstrated that the amino-acid conjugates of 3,7-diazabicyclo[3.3.1]nonane can serve as a molecular scaffold for development of potent antivirals against encephalitic viruses. Our findings will provide a novel platform to develop effective inhibitors of JEV and perhaps other RNA viruses causing encephalitis.  相似文献   

6.
Zhang T  Wu Z  Du J  Hu Y  Liu L  Yang F  Jin Q 《PloS one》2012,7(1):e30259

Background

New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV) infections. JEV requires an α-1 translational frameshift to synthesize the NS1'' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae) and isoflavonoid daidzin (Dai) against JEV have not been described.

Methodology/Principal Findings

The 50% cytotoxic concentration (CC50) and 50% effective concentration (EC50) against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA) was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent Kb value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could.

Conclusions/Significance

Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.  相似文献   

7.
Abstract: Evidence that neurosteroids are potent modulators of the action of GABA at GABAA receptors has prompted the investigation of the mechanism that controls brain neurosteroid synthesis by glial cell mitochondria in vivo. In vitro studies suggest that the interaction of the diazepam binding inhibitor (DBI)—a polypeptide that is abundant in steroidogenic cells—with glial mitochondrial DBI receptors (MDRs) is a crucial step in the physiological regulation of neurosteroid biosynthesis. MDRs bind 4-chlorodiazepam (4′-CD), N,N-di-n-hexyl-2-(4-fluorophenyl)-indol-3-acetamide (FGIN-1–27), and the isoquinoline carboxamide PK 11195 with high affinity, and these ligands have been used to investigate whether the stimulation of glial MDRs increases brain pregnenolone production in vivo. Adrenalectomized and castrated (A-C) male rats (to eliminate peripheral sources of pregnenolone) were pretreated with trilostane (to prevent pregnenolone metabolism to progesterone), and the pregnenolone content in brain regions dissected after fixation with a 0.8-s exposure to microwave irradiation focused to the head was determined by HPLC followed by specific radioimmunoassay. The forebrain and cerebellum of A-C rats contained 4–7 ng of pregnenolone/g of tissue, and the olfactory bulb contained 10–14 ng/g. These concentrations of brain pregnenolone are only 30–40% lower than those of shamoperated rats. In contrast, the plasma pregnenolone content of sham-operated rats was 2–3 ng/ml, but it was only 0.15–0.20 ng/ml in the plasma of A-C rats. In A-C rats, treatment with the MDR ligands 4-CD and FGIN-1–27 increased the pregnenolone content in the brain but failed to change the plasma or peripheral tissue content of this steroid. The effect of 4′-CD on brain pregnenolone content was maximal (70–100% increase) at the dose of 18 μmol/kg, 5–10 min after intravenous injection. The effect of oral administration of FGIN-1–27 on brain pregnenolone content was maximal (80–150% increase) at doses of 400–800 μmollkg and peaked at ~ 1 h. That this effect of FGIN-1–27 was mediated by the MDR was documented by pre-treatment with the MDR partial agonist PK 11195 (100 μmol/kg, i.p.). PK 11195 did not affect basal brain pregnenolone content but prevented the accumulation of brain pregnenolone induced by FGIN-1–27. FGIN-1–27 and 4-CD failed to increase the brain concentration of dehydre epiandrosterone in A-C rats. These data suggest that glial cell MDRs play a role in neurosteroid biosynthesis in vivo.  相似文献   

8.
Small enkephalin-related peptides containing a 1-adamantanamine moiety coupled through an amide linkage at the C-terminus were synthesized. Several of the compounds showed high μ opioid activity and μ receptor selectivity. The new adamantanamine derivatives were also examined for antiviral activity against HIV-1 in a cell culture system. Some of them inhibited syncytia formation even when the antigen assay gave evidence for viral replication.  相似文献   

9.
A series of novel benzimidazole derivatives were designed, synthesized, and evaluated for their activities against four kinds of enteroviruses, that is, Coxsackie virus A16, B3, B6 and Enterovirus 71 in VERO cells. Strong activities against enterovirus replication and low cytotoxicities were observed in these benzimidazoles generally. The most promising compound was (l)-2-(pyridin-2-yl)-N-(2-(4-nitrophenyl)pentan-3-yl)-1H-benzimidazole-4-carboxamide (16), with a high antiviral potency (IC(50)=1.76 μg/mL) and a remarkable selectivity index (328). These compounds were selected for further evaluation as novel enterovirus inhibitors.  相似文献   

10.
Wu Z  Xue Y  Wang B  Du J  Jin Q 《PloS one》2011,6(10):e26304
Japanese encephalitis virus (JEV), a neurotropic mosquito-borne flavivirus, causes acute viral encephalitis and neurologic disease with a high fatality rate in humans and a range of animals. Small interfering RNA (siRNA) is a powerful antiviral agent able to inhibit JEV replication. However, the high rate of genetic variability between JEV strains (of four confirmed genotypes, genotypes I, II, III and IV) hampers the broad-spectrum application of siRNAs, and mutations within the targeted sequences could facilitate JEV escape from RNA interference (RNAi)-mediated antiviral therapy. To improve the broad-spectrum application of siRNAs and prevent the generation of escape mutants, multiple siRNAs targeting conserved viral sequences need to be combined. In this study, using a siRNA expression vector based on the miR-155 backbone and promoted by RNA polymerase II, we initially identified nine siRNAs targeting highly conserved regions of seven JEV genes among strains of the four genotypes of JEV to effectively block the replication of the JEV vaccine strain SA14-14-2. Then, we constructed single microRNA-like polycistrons to simultaneously express these effective siRNAs under a single RNA polymerase II promoter. Finally, these single siRNAs or multiple siRNAs from the microRNA-like polycistrons showed effective anti-virus activity in genotype I and genotype III JEV wild type strains, which are the predominant genotypes of JEV in mainland China. The anti-JEV effect of these microRNA-like polycistrons was also predicted in other genotypes of JEV (genotypes II and IV), The inhibitory efficacy indicated that siRNAs×9 could theoretically inhibit the replication of JEV genotypes II and IV.  相似文献   

11.
12.
The antiviral effects of nitric oxide (NO) on Japanese encephalitis virus (JEV), a member of the family Flaviviridae, were investigated in this study. In vitro, inhibition of replication of JEV in gamma interferon-activated RAW 264.7 murine macrophages was correlated to cellular NO production. When cocultured with infected murine neuroblastoma N18 cells, gamma interferon-activated RAW 264.7 cells also efficiently hindered JEV replication in contiguous bystanders, and this anti-JEV effect could be reversed by an NO synthase (NOS) inhibitor, N-monomethyl-L-arginine acetate. In vivo, the mortality rate increased as the NOS activity of JEV-infected mice was inhibited by its competitive inhibitor, N-nitro-L-arginine methyl ester. Moreover, when an organic donor, S-nitro-N-acetylpenicillamine (SNAP), was used, the NO-mediated antiviral effect was also observed in primarily JEV-infected N18, human neuronal NT-2, and BHK-21 cells, as well as in persistently JEV-infected C2-2 cells. These data reaffirm that NO has an effective and broad-spectrum antimicrobial activity against diversified intracellular pathogens. Interestingly, the antiviral effect of NO was not enhanced by treatment of N18 cells with SNAP prior to JEV infection, a measure which has been shown to greatly increase the antiviral effect of NO in infection by vesicular stomatitis virus. From biochemical analysis of the impact of NO on JEV replication in cell culture, NO was found to profoundly inhibit viral RNA synthesis, viral protein accumulation, and virus release from infected cells. The results herein thus suggest that NO may play a crucial role in the innate immunity of the host to restrict the initial stage of JEV infection in the central nervous system.  相似文献   

13.
A number of acyclic nucleoside phosphonate analogues, including 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and its 2,6-diaminopurine derivative PMEDAP, (R,S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine [(R,S)-FPMPA] and its 2,6-diaminopurine derivative (R,S)-FPMPDAP were evaluated for their inhibitory effects on HIV-1 replication in two natural human cell systems, i.e. peripheral blood lymphocytes (PBL) and freshly prepared monocyte/macrophages (M/M). All compounds were potent inhibitors of HIV-1 replication in PBL [50% effective concentration (EC50): 0.94-3.9 microM] and M/M (EC50: 0.022-0.95 microM). In particular, (R,S)-FPMPA and (R,S)-FPMPDAP showed a greater antiviral selectivity than PMEA and PMEDAP due to the virtual lack of toxicity of the former compounds in these cell systems. Also, the antiviral selectivity of the acyclic nucleoside phosphonate analogues was much higher in M/M than in the human T-cell lines MT-4, ATH8 and CEM.  相似文献   

14.
The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.  相似文献   

15.
Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity - inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis.  相似文献   

16.
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, occasionally causes severe central nervous system disorders in the risk zone where more than 3 billion people reside. Our prior studies demonstrated antiviral potential of 4,5-dihydrofuran-3-carboxylate compound CW-33 (ethyl 2-(3′,5′-dimethylanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) and its derivative CW-33A ((ethyl 2-(2-fluoroanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) against JEV infection ((Int. J. Mol. Sci. 2016, 17: E1386; Sci. Rep. 2018, 8: 16595). This study synthesized six new CW-33 derivatives containing chloro, or bromo groups at the C-2, C-3, or C-4 of anilino ring of CW-33, and assessed the antiviral activity and mechanisms of these chloro- and bromo-anilino substituted derivatives. CW-33K, CW-33L and CW-33M had the bromo-substituents at the C-2, C-3, or C-4 of anilino ring of CW-33, respectively, showing the higher anti-JEV activity than CW-33 and other derivatives. CW-33K (ethyl 2-(2-bromoanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) exhibited the highest antiviral efficacy and therapeutic index. The IC50 value of CW-33K was less than 5 μM for reducing JEV-induced cytopathic effect, virus infectivity and virus yield. CW-33K significantly inhibited the JEV replication at the early and late stages, suppressing viral RNA synthesis and intracellular JEV particle production. The study demonstrated that the CW-33 derivative with a bromo substitution at the C-2 anilino ring improved the antiviral activity JEV, providing the structure-antiviral activity relationship for the development of anti-JEV agents.  相似文献   

17.
In recent years, inhibition of HDAC6 became a promising therapeutic strategy for the treatment of cancer and HDAC6 inhibitors were considered to be potent anti-cancer agents. In this work, celecoxib showed moderate degree of HDAC6 inhibition activity and selectivity in preliminary enzyme inhibition activity assay. A series of hydroxamic acid derivatives bearing phenylpyrazol moiety were designed and synthesized as HDAC6 inhibitors. Most compounds showed potent HDAC6 inhibition activity. 11i was the most selective compound against HDAC6 with IC50 values of 0.020 µM and selective factor of 101.1. Structure-activity relationship analysis indicated that locating the linker group at 1′ of pyrazol gave the most selectivity. The most compounds 11i (GI50 = 3.63 μM) exhibited 6-fold more potent than vorinostat in HepG2 cells. Considering of the high selectivity against HDAC6 and anti-proliferation activity, such compounds have potential to be developed as anti-cancer agents.  相似文献   

18.
The fundamental role of p38 mitogen-activated protein kinases (MAPKs) in inflammation underlines their importance as therapeutic targets for various inflammatory medical conditions, including infectious, vascular, neurobiological and autoimmune disease. Although decades of research have yielded several p38 inhibitors, most clinical trials have failed, due to lack of selectivity and efficacy in vivo. This underlines the continuous need to screen for novel structures and chemotypes of p38 inhibitors. Here we report an optimized MK2-EGFP translocation assay in a semi-automated image based High Content Analysis (HCA) system to screen a combinatorial library of 3362 proprietary compounds with extensive variations of chemotypes. By determining the levels of redistribution of MK2-EGFP upon activation of the Rac/p38 pathway in combination with compound treatment, new candidates were identified, which modulate p38 activity in living cells. Based on integrated analysis of TNFα release from human whole blood, biochemical kinase activity assays and JNK3 selectivity testing, we show that this cell based assay reveals a high overlap and predictability for cellular efficacy, selectivity and potency of tested compounds. As a result we disclose a new comprehensive short-list of subtype inhibitors which are functional in the low nanomolar range and might provide the basis for further lead-optimization. In accordance to previous reports, we demonstrate that the MK2-EGFP translocation assay is a suitable primary screening approach for p38-MAPK drug development and provide an attractive labor- and cost saving alternative to other cell based methods including determination of cytokine release from hPBMCs or whole blood.  相似文献   

19.
In adrenal cortex and other steroidogenic tissues including glial cells, the conversion of cholesterol into pregnenolone is catalyzed by the cytochrome P450scc located in the inner mitochondrial membrane. A complex mechanism operative in regulating cholesterol access to P450scc limits the rate of pregnenolone biosynthesis. Participating in this mechanism are DBI (diazepam binding inhibitor), an endogenous peptide that is highly expressed in steroidogenic cells and some of the DBI processing products including DBI 17–50 (TTN). DBI and TTN activate steroidogenesis by binding to a specific receptor located in the outer mitochondrial membrane, termed mitochondrial DBI receptor complex (MDRC). MDRC is a hetero-oligomeric protein: only the subunit that includes the DBI and benzodiazepine (BZD) recognition sites has been cloned. Several 2-aryl-3-indoleacetamide derivatives (FGIN-1-X) with highly selective affinity (nM) for MDRC were synthesized which can stimulate steroidogenesis in mitochondrial preparations. These compounds stimulate adrenal cortex steroidogenesis in hypophysectomized rats but not in intact animals. Moreover, this steroidogenesis is inhibited by the isoquinoline carboxamide derivative PK 11195, a specific high affinity ligand for MDRC with a low intrinsic steroidogenic activity. Some of the FGIN-1-X derivatives stimulate brain pregnenolone accumulation in adrenalectomized-castrated rats. The FGIN-1-X derivatives that increase brain pregnenolone content, elicit antineophobic activity and antagonize punished behavior in the Vogel conflict test in rats. These actions of FGIN-1-X are resistant to inhibition by flumazenil, a specific inhibitor of BZD action in GABAA receptors but are antagonized by PK 11195, a specific blocker of the steroidogenesis activation via MDRC stimulation. It is postulated that the pharmacological action of FGIN-1-X depends on a positive modulation of the GABA action on GABAA receptors mediated by the stimulation of brain neurosteroid production.  相似文献   

20.
In vitro evaluations of the selectivity of COX inhibitors are based on a great variety of experimental protocols. As a result, data available on cyclooxygenase (COX)-1/COX-2/5- lipoxygenase (LOX) selectivity of COX inhibitors lack consistency. We, therefore, performed a systematic analysis of the COX-1/COX-2/5-LOX selectivity of 14 compounds with selective COX inhibitory activity (Coxibs). The compounds belonged to different structural classes and were analyzed employing the well-recognized whole-blood assay. 5-LOX activity was also tested on isolated human polymorphonuclear leukocytes. Among COX inhibitors, celecoxib and ML-3000 (licofelone) inhibited 5-LOX in human neutrophils at micromolar ranges. Surprisingly, ML-3000 had no effect on 5-LOX product synthesis in whole-blood assay. In addition, we could show that inhibition of COX pathways did not increase the transformation of arachidonic acid by the 5-LOX pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号