首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus.  相似文献   

2.
The onset of an adaptive immune response requires the activation of T and B lymphocytes by antigen-presenting cells, through a specialized form of intercellular communication, known as the immunological synapse (IS). In B lymphocytes the IS promotes efficient recognition and acquisition of membrane-bound Ags, while in T cells, it modulates the T cell response upon exposure to peptide-major histocompatibility complexes. In this review, we highlight the similarities that determine B and T cell activation, focusing on immune receptor downstream signaling events that lead to synapse formation. We stress the notion that polarization of T and B lymphocytes characterized by global changes in cytoskeleton and membrane trafficking modulates synapse structure and function, thus determining lymphocyte effector functions and fate.  相似文献   

3.
L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.  相似文献   

4.
ORA I-a, a cloned Ia+ monocyte tumor line, interacts with distinct immunoregulatory T-cell subsets. ORA cells present soluble and alloantigen to primed lymph node T cells and alloantigen to antigen-activated T-cell clones. However, they induce dose-dependent suppression during primary mixed lymphocyte cultures. Activation of a mixed lymphocyte response (MLR) suppressor pathway is mediated by Ly 1+ T cells. This T-cell subset proliferates in response to ORA when Ly 2+ cells are depleted. Furthermore, once activated, Ly 1+ T cells induce effectors of suppression within fresh T-cell populations. These studies indicate that antigen presentation to distinct T-cell subsets during different stages of an immune response may be mediated by unique antigen-presenting cell subpopulations. Immune homeostasis may thus be controlled not only by regulatory T cells, but also by unique antigen-presenting cells which are responsible for their selective activation.  相似文献   

5.
The Ras-ERK cascade is activated by countless external cues that stimulate diverse receptors. Therefore, the mechanisms by which distinct receptors dictate different cellular outcomes by activating the same signaling module has long fascinated many researchers. Initial clues came from observations that the duration of ERK activation is critical to cell-fate decisions. In classical experiments, PC12 cells proliferated after transient ERK activation by epidermal growth factor, but terminally differentiated after more sustained ERK activation by nerve growth factor. Subsequent studies suggested that the duration of ERK signaling is interpreted by cells through a network of immediate-early genes. Nevertheless, it remains ill-defined how the duration and strength of Ras-ERK signaling is established and what genes are differently regulated, thereby translating the response into different biological outcomes. Recent studies with lymphocytes have evoked a new idea that two types of interconnected mechanisms can contribute to the sensitivity and robustness of the ERK activity; 1) interplay between two types of Ras activators (Sos and RasGRP); 2) existence of two subcellular compartments for Ras activation (plasma membrane and Golgi). Moreover, candidate immediate early genes that regulate lymphocyte proliferation and differentiation have emerged.  相似文献   

6.
The contact-dependent exchange of signals between epithelial and neuronal cells results from close membrane-membrane appositions, which are stabilized for years by polarized adhesion, cytoskeletal assemblies and extracellular scaffold proteins. By contrast, owing to a lack of scaffold proteins, interactions between immune cells such as T lymphocytes and antigen-presenting cells (APCs) comprise a spectrum of structurally diverse and short-lived interaction modes that last from minutes to hours. Signals exchanged between T cells and APCs are generated in a specific contact region, termed the "immunological synapse", that coordinates cytoskeletal dynamics with the T-cell receptor (TCR), the engagement of accessory receptors and membrane-proximal signaling. Recent data shed light on the different physical and molecular interaction modes that occur between T cells and APCs, including their dynamics and transition stages, and their consequences for signaling, activation and T-cell effector function.  相似文献   

7.
T lymphocytes are key modulators of the immune response. Their activation requires cell-cell interaction with different myeloid cell populations of the immune system called antigen-presenting cells (APCs). Although T lymphocytes have recently been shown to respond to mechanical cues, in particular to the stiffness of their environment, little is known about the rigidity of APCs. In this study, single-cell microplate assays were performed to measure the viscoelastic moduli of different human myeloid primary APCs, i.e., monocytes (Ms, storage modulus of 520 +90/−80 Pa), dendritic cells (DCs, 440 +110/−90 Pa), and macrophages (MPHs, 900 +110/−100 Pa). Inflammatory conditions modulated these properties, with storage moduli ranging from 190 Pa to 1450 Pa. The effect of inflammation on the mechanical properties was independent of the induction of expression of commonly used APC maturation markers, making myeloid APC rigidity an additional feature of inflammation. In addition, the rigidity of human T lymphocytes was lower than that of all myeloid cells tested and among the lowest reported (Young’s modulus of 85 ± 5 Pa). Finally, the viscoelastic properties of myeloid cells were dependent on both their filamentous actin content and myosin IIA activity, although the relative contribution of these parameters varied within cell types. These results indicate that T lymphocytes face different cell rigidities when interacting with myeloid APCs in vivo and that this mechanical landscape changes under inflammation.  相似文献   

8.
Absolute macrophage dependency of T lymphocyte activation by mitogens.   总被引:50,自引:0,他引:50  
A T lymphocyte subpopulation that contains only 0.3% macrophages and less than 2% B lymphocytes has been prepared from guinea pig lymph node cells by the use of two different types of adherence columns. This subpopulation does not porliferate in response to the mitogens Con A or PHA unless additional macrophages are added. The means by which macrophages restore T cell responsiveness to PHA has been investigated. Marcophages appear to function via two different distinct mechanisms in this experimental situation. The first mechanism involves the binding of PHA to the macrophage followed by the "presentation" of the mitogen to the T lymphocyte in a manner that induces cell activation. This presentation function requires that the macrophage be viable and metabolically active. The second mechanism by which macrophages function is by the elaboration of a soluble factor or factors. The presence of these factors has been reliably and reproducibly demonstrated by using a double-chambered, Marbrook-type tissue culture vessel. This soluble factor can induce activation of T lympohcytes with surface bound PHA in the apparent absence of any form of macrophage presentation. In contrast, the function of this factor is clearly distinct from that of the reducing agent, 2-mercaptoethanol, (2-ME) since 2-ME does not enable this T cell subpopulation to be activated by mitogens. On the basis of these observations, we propose that two distinct signals are required to activate this T lymphocyte subpopulation. One signal is delivered by the interaction of the mitogen with the T cell surface, and the second signal is delivered by a soluble factor(s) produced by macrophages. Whether all types of T lymphocytes require two signals to be activated, remains to be established.  相似文献   

9.
The B cell is the initiating antigen-presenting cell in peripheral lymph nodes   总被引:27,自引:0,他引:27  
We have examined the role of B cells in antigen presentation in lymph nodes in several ways. We found that mice depleted of B lymphocytes via chronic injection of anti-mu-chain antibody do not mount peripheral lymph node T cell proliferative responses to normally immunogenic doses of antigen. Depletion of B cells by passage of immune lymph node cells over anti-immunoglobulin columns early after immunization depletes antigen-presenting function from draining lymph nodes, and this function can be restored by using B cells or splenic adherent cells to allow the remaining T cells to proliferate. Lymph node B cells present antigen very effectively to lines of antigen-specific T cells. However, unfractionated lymph node cells from anti-mu-treated mice present very poorly, if at all, whereas unfractionated spleen cells from the same mice do present antigen. This is in keeping with our previous finding that helper T cell function in the spleen is normal in B cell-deprived mice. Finally, when mice homozygous for the lymphoproliferative gene lpr are treated chronically with anti-mu-chain antibody, lymphadenopathy is greatly retarded, suggesting a role for B cells in the massive proliferation of T cells in this syndrome. From this analysis, it would appear that the initiating antigen-presenting cell in the lymph node is a B lymphocyte, and that B lymphocytes in lymph nodes may be distinct from those in the spleen. It is of interest that these results also suggest that the lymph node lacks an antigen-presenting cell that is found in the spleen, perhaps the dendritic cell.  相似文献   

10.
11.
Leptin has direct effects not only on neuroendocrine function and metabolism, but also on T cell-mediated immunity. We report in this study that leptin receptor (ObR) is expressed on resting normal mouse CD4(+), CD8(+), B cells, and monocyte/macrophages. ObR expression is up-regulated following cell activation, but with different kinetics, in different lymphocyte subsets. Leptin binding to ObR results in increased STAT-3 activation in T cells, with a different activation pattern in resting vs anti-CD3 Ab stimulated T cells. Leptin also promotes lymphocyte survival in vitro by suppressing Fas-mediated apoptosis. B lymphocytes appear to be more susceptible to the antiapoptotic effects of leptin, and they show higher surface expression of ObR, compared with T cells. Moreover, CD4(+) T cells isolated from ObR-deficient mice displayed a reduced proliferative response, compared with normal controls. Furthermore, ObR/STAT-3-mediated signaling in T lymphocytes is decreased in the diet-induced obese mouse model of obesity and leptin resistance. In summary, our findings show that the ObR is expressed on normal mouse lymphocyte subsets, that leptin plays a role in lymphocyte survival, and that leptin alters the ObR/STAT-3-mediated signaling in T cells. Taken together, our data further support the notion that nutritional status acting via leptin-dependent mechanisms may alter the nature and vigor of the immune response.  相似文献   

12.
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.  相似文献   

13.
14.
The entry of radiolabeled blood-borne T and B lymphocytes into resting popliteal lymph nodes and popliteal lymph nodes stimulated with semiallogeneic lymphocytes was investigated in rats. Thoracic duct lymphocytes separated into T- and B-lymphocyte populations on nylon-wool columns were radiolabeled with 51chromium and equal numbers of T or B lymphocytes were injected intravenously. While the ratio of T and B lymphocytes in the blood is approximately 3:1 it was found that the ratio of T to B lymphocytes migrating into lymph nodes was approximately 9 T to 1 B lymphocyte in both resting and antigenically stimulated lymph nodes. Since the ratio of T to B lymphocytes in thoracic duct lymph is similar to that of blood, there is a disparity between the number of T cells entering and leaving lymph nodes. These results suggest that some T lymphocytes may return to the blood directly and/or there is increased T lymphocyte death in lymph nodes.  相似文献   

15.
The orchestrated movement of cells of the immune system is essential to generation of productive responses leading to protective memory development. Recent advances have allowed the direct microscopic visualization of lymphocyte and antigen-presenting cell migration and interaction during immune response initiation and progression. These studies have defined important characteristics of the microanatomy of lymphocyte movement, particularly in the lymph node. Moreover, the ability to track endogenous antigen-specific T cells has revealed a coordinated pathway of CD8 T cell movement in the spleen following primary and secondary infection. As a consequence, the local anatomy of secondary lymphoid tissues during infection has emerged as a critical regulator of immunity. While some of the factors responsible for the migratory cues instructing immune cell movement have been identified, much remains to be learned. Here, we provide a brief overview of studies examining CD8 T cell localization during the immune response to infection in the context of our current understanding of immune system structure.  相似文献   

16.
T cells must integrate a diverse array of intrinsic and extrinsic signals upon Ag recognition. Although these signals have canonically been categorized into three distinct events--Signal 1 (TCR engagement), Signal 2 (costimulation or inhibition), and Signal 3 (cytokine exposure)--it is now appreciated that many other environmental cues also dictate the outcome of T cell activation. These include nutrient availability, the presence of growth factors and stress signals, as well as chemokine exposure. Although all of these distinct inputs initiate unique signaling cascades, they also modulate the activity of the evolutionarily conserved serine/threonine kinase mammalian target of rapamycin (mTOR). Indeed, mTOR serves to integrate these diverse environmental inputs, ultimately transmitting a signaling program that determines the fate of newly activated T cells. In this review, we highlight how diverse signals from the immune microenvironment can guide the outcome of TCR activation through the activation of the mTOR pathway.  相似文献   

17.
We report here the results of experiments in which the migration of three T cell subsets (CD4+, CD8+, and gamma delta+T19+ cells) through antigen-stimulated lymph nodes and subcutaneous granulomas has been compared with that through normal skin and resting lymph nodes. The percentage of gamma delta+T19+ lymphocytes was halved and the percentage of CD8+ lymphocytes was doubled in lymph draining stimulated compared with control tissues, and all lymphocyte subsets except gamma delta+T19+ lymphocytes had higher hourly outputs in lymph draining antigen-stimulated compared with control tissues. Antigen also resulted in a higher percentage of CD8+ lymphoblasts and a lower percentage of gamma delta+T19+ lymphoblasts in efferent lymph draining antigen-stimulated lymph nodes. The data indicate that lymphocyte subsets leave the blood with differing efficiencies in different vascular beds and raise the possibility that antigen can influence the rate at which tissues extract individual T cell subsets from the blood.  相似文献   

18.
Yu Y  Fay NC  Smoligovets AA  Wu HJ  Groves JT 《PloS one》2012,7(2):e30704
Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88-103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL.  相似文献   

19.
CD5 and CD6 are closely related lymphocyte surface receptors of the scavenger receptor cysteine-rich superfamily, which show highly homologous extracellular regions but little conserved cytoplasmic tails. Both molecules are expressed on the same lymphocyte populations (thymocytes, mature T cells, and B1a cells) and share similar co-stimulatory properties on mature T cells. Although several works have been reported on the molecular associations and the signaling pathway mediated by CD5, very limited information is available for CD6 in this regard. Here we show the physical association of CD5 and CD6 at the cell membrane of lymphocytes, as well as their localization at the immunological synapse. CD5 and CD6 co-immunoprecipitate from Brij 96 but not Nonidet P-40 cell lysates, independently of both the co-expression of other lymphocyte surface receptors and the integrity of CD5 cytoplasmic region. Fluorescence resonance energy transfer analysis, co-capping, and co-modulation experiments demonstrate the physical in vivo association of CD5 and CD6. Analysis of T cell/antigen-presenting cells conjugates shows the accumulation of both molecules at the immunological synapse. These results indicate that CD5 and CD6 are structurally and physically related receptors, which may be functionally linked to provide either similar or complementary accessory signals during T cell activation and/or differentiation.  相似文献   

20.
We describe a method for generation of homogeneous cell populations that each arise from clonal expansion of cells at a discrete stage of differentiation within a single lineage. We have used this to produce continuously propagatable lymphocyte clones. Each clone represents a cell at a progressive stage of thymus-dependent cellular differentiation. These cloned cells bear stable surface membrane glycoproteins characteristic of precursor cells and mature progeny; conditions allowing maximal cloning efficiencies for each cell type (10–85%) have been established. Mature lymphocyte clones continue to express specialized function and provide material for biochemical analysis of T lymphocyte functions; one fully differentiated clone from the “inducer” lymphocyte set synthesizes a molecule that activates other lymphocytes to secrete immunoglobulin. This activity is associated with a highly purified molecule having a molecular weight of 45,000 daltons and an isoelectric point of approximately 6.0. This molecule, together with clones of precursor and mature T lymphocytes, may provide a system to further study the mechanisms of gene activation during cellular differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号