首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.  相似文献   

2.
Caspase-8 activation promotes cell apoptosis but is also essential for T cell activation. The extent of caspase activation and substrate cleavage in these divergent processes remains unclear. We show that murine effector CD4(+) T cells generated levels of caspase activity intermediate between unstimulated T cells and apoptotic populations. Both caspase-8 and caspase-3 were partially activated in effector T cells, which was reflected in cleavage of the caspase-8 substrates, c-FLIP(L), receptor interacting protein 1, and to a lesser extent Bid, but not the caspase-3 substrate inhibitor of caspase-activated DNase. Th2 effector CD4(+) T cells manifested more caspase activity than did Th1 effectors, and caspase blockade greatly decreased initiation of cell cycling. The current findings define the level of caspase activity and substrates during initiation of T cell cycling.  相似文献   

3.
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.  相似文献   

4.
Ectodomain cleavage by A-disintegrin and -metalloproteases (ADAMs) releases many important biologically active substrates and is therefore tightly controlled. Part of the regulation occurs on the level of the enzymes and affects their cell surface abundance and catalytic activity. ADAM-dependent proteolysis occurs outside the plasma membrane but is mostly controlled by intracellular signals. However, the intracellular domains (ICDs) of ADAM10 and -17 can be removed without consequences for induced cleavage, and so far it is unclear how intracellular signals address cleavage. We therefore explored whether substrates themselves could be chosen for proteolysis via ICD modification. We report here that CD44 (ADAM10 substrate), a receptor tyrosine kinase (RTK) coreceptor required for cellular migration, and pro-NRG1 (ADAM17 substrate), which releases the epidermal growth factor (EGF) ligand neuregulin required for axonal outgrowth and myelination, are indeed posttranslationally modified at their ICDs. Tetradecanoyl phorbol acetate (TPA)-induced CD44 cleavage requires dephosphorylation of ICD serine 291, while induced neuregulin release depends on the phosphorylation of several NRG1-ICD serines, in part mediated by protein kinase Cδ (PKCδ). Downregulation of PKCδ inhibits neuregulin release and reduces ex vivo neurite outgrowth and myelination of trigeminal ganglion explants. Our results suggest that specific selection among numerous substrates of a given ADAM is determined by ICD modification of the substrate.  相似文献   

5.
6.
A disintegrin and metalloproteases (ADAMs) have been implicated in many processes controlling organismic development and integrity. Important substrates of ADAM proteases include growth factors, cytokines and their receptors and adhesion proteins. The inducible but irreversible cleavage of their substrates alters cell-cell communication and signaling. The crucial role of ADAM proteases (e.g. ADAM10 and 17) for mammalian development became evident from respective knockout mice, that displayed pre- or perinatal lethality with severe defects in many organs and tissues. Although many substrates for these two ADAM proteases were identified over the last decade, the regulation of their surface appearance, their enzymatic activity and their substrate specificity are still not well understood. We therefore analyzed the constitutive and inducible surface expression of ADAM10 and ADAM17 on a variety of human T cell and tumor cell lines. We demonstrate that ADAM10 is constitutively present at comparably high levels on the majority of the tested cell types. Stimulation with phorbol ester and calcium ionophore does not significantly alter the amount of surface ADAM10, except for a slight down-regulation from T cell blasts. Using FasL shedding as a readout for ADAM10 activity, we show that PKC activation and calcium mobilization are both prerequisite for activation of ADAM10 resulting in a production of soluble FasL. In contrast to ADAM10, the close relative ADAM17 is detected at only low levels on unstimulated cells. ADAM17 surface expression on T cell blasts is rapidly induced by stimulation. Since this inducible mobilization of ADAM17 is sensitive to inhibitors of actin filament formation, we propose that ADAM17 but not ADAM10 is prestored in a subcellular compartment that is transported to the cell surface in an activation- and actin-dependent manner.  相似文献   

7.
Membrane cofactor protein CD46 controls complement activation on cells, is a receptor for several pathogens, and modulates immune responses by affecting CD8(+) T cells. Cells can release CD46 in an intact form on membrane vesicles and in a truncated form by a metalloproteolytic cleavage. The mechanism of shedding and its relationship to cell physiology has remained unclear. We have found using RNA interference analysis that a disintegrin and metalloproteinase (ADAM) 10 is responsible for the regulated shedding of the ectodomain of CD46 in apoptotic cells. The shedding of CD46 was initiated with staurosporine and UVB. Exposure of cell cultures to either UVB or staurosporine resulted in changes of cell morphology and detachment of cells from their matrices within 8-24 h. During this process CD46 was released both in apoptotic vesicles (vCD46) and proteolytically (sCD46) into the medium. Both the metalloproteinase inhibitor GM6001 and RNA interference of ADAM10 completely prevented the release of sCD46 and increased the expression of vCD46 on HaCaT cell vesicles, suggesting that ADAM10 releases sCD46 from the apoptotic vesicles. To explore whether the release of sCD46 is associated with apoptosis we analyzed the effects of caspase inhibitors. As expected, the inhibition of caspase activity attenuated the characteristic features of apoptosis and also decreased the release of sCD46. Our results reveal ADAM10 as an important regulator of CD46 expression during apoptosis. The ADAM10-mediated release of CD46 from apoptotic vesicles may represent a form of strategy to allow restricted complement activation to deal with modified self.  相似文献   

8.
T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4+ and CD8+ effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu181–Asp190 of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14+ monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14+ monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14+ monocytes.  相似文献   

9.
Tumour necrosis factor alpha (TNF alpha)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor alpha, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.  相似文献   

10.
The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3   总被引:7,自引:0,他引:7  
A recombinant soluble form of the catalytic domain of human ADAM-10 was expressed as an Fc fusion protein from myeloma cells. The ADAM-10 was catalytically active, cleaving myelin basic protein and peptides based on the previously described 'metallosheddase' cleavage sites of tumour necrosis factor alpha, CD40 ligand and amyloid precursor protein. The myelin basic protein degradation assay was used to demonstrate that hydroxamate inhibitors of matrix metalloproteinases (MMPs) were also inhibitors of ADAM-10. The natural MMP inhibitors, TIMP-2 and TIMP-4 were unable to inhibit ADAM-10, but TIMP-1 and TIMP-3 were inhibitory. Using a quenched fluorescent substrate assay and ADAM-10 we obtained approximate apparent inhibition constants of 0.1 nM (TIMP-1) and 0.9 nM (TIMP-3). The TIMP-1 inhibition of ADAM-10 could therefore prove useful in distinguishing its activity from that of TACE, which is only inhibited by TIMP-3, in cell based assays.  相似文献   

11.
In this paper we describe novel fluorescent substrates for the human ADAM family members ADAM17, ADAM10, ADAM8, and ADAM12 that have good specificity constants and are useful for high-throughput screening of inhibitors. The fluorescence resonance energy transfer substrates contain a 4-(4-dimethylaminophenylazo)benzoyl and 5-carboxyfluorescein (Dabcyl/Fam) pair and are based on known cleavage sequences in precursor tumor necrosis factor-alpha (TNF-alpha) and CD23. The precursor TNF-alpha-based substrate, Dabcyl-Leu-Ala-Gln-Ala-Homophe-Arg-Ser-Lys(Fam)-NH2, is a good substrate for all the ADAMs tested, including ADAM12 for which there is no reported fluorescent substrate. The CD23-based substrate, Dabcyl-His-Gly-Asp-Gln-Met-Ala-Gln-Lys-Ser-Lys(Fam)-NH2, is more selective, being hydrolyzed efficiently only by ADAM8 and ADAM10. The substrates were used to obtain inhibition constants for four inhibitors that are commonly used in shedding assays: TMI-1, GM6001, GW9471, and TAPI-2. The Wyeth Aerst compound, TMI-1, is a potent inhibitor against all of the ADAMs tested and is slow binding against ADAM17.  相似文献   

12.
ADAM10, as the sheddase of the low affinity IgE receptor (CD23), promotes IgE production and thus is a unique target for attenuating allergic disease. Herein, we describe that B cell levels of ADAM10, specifically, are increased in allergic patients and Th2 prone WT mouse strains (Balb/c and A/J). While T cell help augments ADAM10 expression, Balb WT B cells exhibit increased ADAM10 in the naïve state and even more dramatically increased ADAM10 after anti-CD40/IL4 stimulation compared C57 (Th1 prone) WT B cells. Furthermore, ADAM17 and TNF are reduced in allergic patients and Th2 prone mouse strains (Balb/c and A/J) compared to Th1 prone controls. To further understand this regulation, ADAM17 and TNF were studied in C57Bl/6 and Balb/c mice deficient in ADAM10. C57-ADAM10B-/- were more adept at increasing ADAM17 levels and thus TNF cleavage resulting in excess follicular TNF levels and abnormal secondary lymphoid tissue architecture not noted in Balb-ADAM10B-/-. Moreover, the level of B cell ADAM10 as well as Th context is critical for determining IgE production potential. Using a murine house dust mite airway hypersensitivity model, we describe that high B cell ADAM10 level in a Th2 context (Balb/c WT) is optimal for disease induction including bronchoconstriction, goblet cell metaplasia, mucus, inflammatory cellular infiltration, and IgE production. Balb/c mice deficient in B cell ADAM10 have attenuated lung and airway symptoms compared to Balb WT and are actually most similar to C57 WT (Th1 prone). C57-ADAM10B-/- have even further reduced symptomology. Taken together, it is critical to consider both innate B cell levels of ADAM10 and ADAM17 as well as Th context when determining host susceptibility to allergic disease. High B cell ADAM10 and low ADAM17 levels would help diagnostically in predicting Th2 disease susceptibility; and, we provide support for the use ADAM10 inhibitors in treating Th2 disease.  相似文献   

13.
The ADAM metalloproteinases   总被引:2,自引:0,他引:2  
  相似文献   

14.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.  相似文献   

15.
The release of amyloidogenic amyloid-beta peptide (Abeta) from amyloid-beta precursor protein (APP) requires cleavage by beta- and gamma-secretases. In contrast, alpha-secretase cleaves APP within the Abeta sequence and precludes amyloidogenesis. Regulated and unregulated alpha-secretase activities have been reported, and the fraction of cellular alpha-secretase activity regulated by protein kinase C (PKC) has been attributed to the ADAM (a disintegrin and metalloprotease) family members TACE and ADAM-10. Although unregulated alpha-secretase cleavage of APP has been shown to occur at the cell surface, we sought to identify the intracellular site of PKC-regulated alpha-secretase APP cleavage. To accomplish this, we measured levels of secreted ectodomains and C-terminal fragments of APP generated by alpha-secretase (sAPPalpha) (C83) versus beta-secretase (sAPPbeta) (C99) and secreted Abeta in cultured cells treated with PKC and inhibitors of TACE/ADAM-10. We found that PKC stimulation increased sAPPalpha but decreased sAPPbeta levels by altering the competition between alpha- versus beta-secretase for APP within the same organelle rather than by perturbing APP trafficking. Moreover, data implicating the trans-Golgi network (TGN) as a major site for beta-secretase activity prompted us to hypothesize that PKC-regulated alpha-secretase(s) also reside in this organelle. To test this hypothesis, we performed studies demonstrating proteolytically mature TACE intracellularly, and we also showed that regulated alpha-secretase APP cleavage occurs in the TGN using an APP mutant construct targeted specifically to the TGN. By detecting regulated alpha-secretase APP cleavage in the TGN by TACE/ADAM-10, we reveal ADAM activity in a novel location. Finally, the competition between TACE/ADAM-10 and beta-secretase for intracellular APP cleavage may represent a novel target for the discovery of new therapeutic agents to treat Alzheimer's disease.  相似文献   

16.
Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.  相似文献   

17.
The immune system includes CD4+ regulatory T (T reg) cells that play a role in self-tolerance and demonstrate functional variations that govern immune responses. HHV-6 is an important immunosuppressive virus that completely replicates in vivo and in vitro in only CD4+ T cells. However, there have been no reports of the specific T-cell subpopulation that permits the replication of this virus. Here, we evaluated the infectivity of HHV-6 to specific T-cell populations such as CD4+CD25 high, which includes the majority of T reg cells, and CD4+CD25(-). These cells were isolated from peripheral blood and then expanded. The expanded cell fractions were then infected with the HHV-6 variant B strain, and the spreads of infected cells were evaluated by immunofluorescence. Viral growth was also quantified by real-time PCR. The effects of virus infection on cytokine production from these T-cell subsets were examined using ELISA. Our results revealed that both these fractions permitted complete HHV-6 replication. Virus infection enhanced the production of both Th1- and Th2-type cytokines from CD4+CD25(-) T cells; however, only Th2-type cytokine release was augmented from viral-infected CD4+CD25 high T cells. Further, while virusinfected CD4+CD25 high T cells shift their antiviral immunity toward Th2 dominance by producing IL-10, the role of virus-infected CD4+CD25(-) T cells remains obscure.  相似文献   

18.
Met, the tyrosine kinase receptor for the hepatocyte growth factor is a prominent regulator of cancer cell invasiveness and has emerged as a promising therapeutic target. Binding of the anti-Met monoclonal antibody DN30 to its epitope induces the proteolytic cleavage of Met, thereby impairing the invasive growth of tumors. The molecular mechanism controlling this therapeutic shedding process has so far been unknown. Here, we report that A Disintegrin And Metalloproteinase (ADAM)-10, but not ADAM-17, is required for DN30-induced Met shedding. Knockdown of ADAM-10 in different tumor cell lines or abrogation of its proteolytic activity by natural or synthetic inhibitors abolished Met down-regulation on the cell surface as well as reduction of Met activation. Moreover, hepatocyte growth factor-induced tumor cell migration and invasion were impaired upon ADAM-10 knockdown. Thus, the therapeutic effect of DN30 involves ADAM-10-dependent Met shedding, linking for the first time a specific metalloprotease to target therapy against a receptor tyrosine kinase.  相似文献   

19.
The low affinity receptor for IgE, CD23, is the natural regulator of IgE synthesis, and understanding both the synthesis and the catabolism of CD23 are, thus, important issues. Membrane CD23 is cleaved by a disintegrin and metalloproteinase 10 (ADAM10) and this cleavage influences the ability of CD23 to regulate IgE. In contrast to the belief that cleavage is a cell surface event, endosomal neutralization with NH4Cl was found to dramatically reduce CD23 cleavage, suggesting that the majority of CD23 cleavage occurred subsequent to internalization in the endosomal pathway and not at the cell surface. In line with this, full-length CD23 was shown to be sorted in an ADAM10-dependent manner into exosomes. Greatly increased ADAM10-mediated CD23 cleavage was seen at endosomal pH. Additionally, the stalk region of CD23 was found to interact with ADAM10 and ADAM10 binding of CD23 was found to be protease independent. SPR analysis of the interaction indicated about a 10-fold increase in the Rmax at endosomal pH (pH 5.8) compared with pH 7.4, whereas the affinity of the interaction was not significantly changed. The Rmax change, combined with the increased cleavage at endosomal pH, indicates greater accessibility of the CD23 stalk region for ADAM10 at the lower pH. These results indicate a model where CD23 internalization results in ADAM10-dependent incorporation into exosomes, followed by partial cleavage of CD23 by ADAM10 prior to being released from the cell. The increased cleavage at endosomal pH also has implications for other ADAM10 substrates.  相似文献   

20.
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号