首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response variability of the single neurons of the inferior colliculus of mouse (Mus musculus) to series of noise bands and of notch noises with regular 1/12 octave steps of the band/notch center frequency and width of noise band/notch 1/3 octave, was studied. Neurons with strong inhibitory influence in excitatory response area (inhibitory-dominated) show low impulse activity when noise band exceeded excitatory response area. Spectral contrasts crossing the center of excitatory response area (at CF or nearly CF) were found to be the most efficient stimuli for such neurons. Neuron responses to spectral contrasts derived both from noise band and noise notch were identical. Approaching of inhibitory and excitatory inputs is expected to sharpen the auditory neurons frequency tuning to position of spectral contrasts, similar to neuronal processing in visual system. Neuron selectivity to the direction of spectral contrasts movement was determined in neuron response differences when the noise band or notch shifted from excitatory area to inhibitory areas as compared with shift in the opposite direction. Functional role of contrast mechanism for sound localization on the base spectral cues related to external ear transfer characteristics is discussed.  相似文献   

2.
Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT) patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies.  相似文献   

3.
Summary For echolocation,Rhinolophus ferrumequinum emits orientation sounds, each of which consists of a long constant-frequency (CF) component and short frequency-modulated (FM) components. The CF component is about 83 kHz and is used for Doppler-shift compensation. In this bat, single auditory nerve fibers and cochlear nuclear neurons tuned at about 83 kHz show low threshold and very sharp filter characteristics. The slopes of their tuning curves ranged between 1,000 and 3,500 dB/octave and their Q-10 dB values were between 20 and 400, 140 on the average (Figs. 3–5). The peripheral auditory system is apparently specialized for the reception and fine frequency analysis of the CF component in orientation sounds and Doppler-shift compensated echoes. This specialization is not due to suppression or inhibition comparable to lateral inhibition, but due to the mechanical specialization of the cochlea. Peripheral auditory neurons with the best frequency between 77 and 87 kHz showed not only on-responses, but also off-responses to tonal stimuli (Figs. 1, 2, and 6). The off-responses with a latency comparable to that of N1-off were not due to a rebound from either suppression or inhibition, but probably due to a mechanical transient occurring in the cochlea at the cessation of a tone burst.We thank Alexander von Humboldt Stiftung, Deutsche Forschungsgemeinschaft (Grant No. Ne146/6-8), Stiftung Volkswagenwerk (Grant No. 111858), and American National Science Foundation (Grant No. 40018 and BMS 75-17077) for their support for our cooperative work.  相似文献   

4.
Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.  相似文献   

5.
Selectivity of neurons of inferior colliculus of the mouse Mus musculus to direction of translocation of spectral notches in the wideband signals was studied at the notch width 1/2, 1/3, 1/6, and 1/12 octave. Compared were variabilities of responses to two series of the wideband noises with the central frequency of the spectral notch, shifting regularly by 1/12 octave (from the high frequencies to low and from low to high). The selectivity of neurons of the inferior colliculus central nucleus to direction of translocation of spectral notches in the wideband noise was revealed in differences of impulse responses to the noise with notches corresponding to areas of neuron inhibitory zones. The response was greater in the case when the frequency notch in the area of the inhibitory zone followed the notch that included the neuron characteristic frequency. For each width of the spectral notch the number of neurons selective to direction of its shift as well as the frequency diapason of selectivity were determined. Using simultaneously the method of testing by single tones and by double-tone complexes, the frequency-spatial characteristics of the neuron receptive fields (thresholds, characteristic frequencies, a shape and acuteness of the frequency tuning) were obtained. These data allow substantiating the role of inhibition in formation of neuron selectivity to the direction of translocation of spectral minima in the wideband signals used by the auditory system for reflection of the acoustic space.  相似文献   

6.
An auditory fovea in the barn owl cochlea   总被引:1,自引:0,他引:1  
The distribution of frequencies along the basilar papilla of the barn owl (Tyto alba) was studied by labelling small groups of primary auditory neurones of defined frequency response and tracing them to their peripheral innervation sites. The exact location of marked neurones was determined in cochlear wholemounts with the aid of a special surface preparation technique. The average basilar papilla length (in fixed, embedded specimens) was 10.74 mm.The resulting frequency map shows the basic vertebrate pattern with the lowest frequencies represented apically and increasingly higher frequencies mapped at progressively more basal locations. However, the length of basilar papilla devoted to different frequency ranges, i.e. the space per octave, varies dramatically in the barn owl. The lower frequencies (up to 2 kHz) show values between about 0.35 and 1 mm/octave, which are roughly equivalent to values reported for other birds. Above that, the space increases enormously, the highest octave (5–10 kHz) covering about 6 mm, or more than half of the length of the basilar papilla.Such an overrepresentation of a narrow, behaviourally very important frequency band is also seen in some bats, where it has been termed an acoustic or auditory fovea.Abbreviations CF characteristic frequency - HRP horseradish peroxidase - NA Nucleus angularis - NM Nucleus magnocellularis  相似文献   

7.
Pteronotus parnellii uses the second harmonic (61-62 kHz) of the CF component in its orientation sounds for Doppler-shift compensation. The bat's inner ear is mechanically specialized for fine analysis of sounds at about 61-62 kHz. Because of this specialization, cochlear microphonics (CM) evoked by 61-62 kHz tone bursts exhibit prominent transients, slow increase and decrease in amplitude at the onset and cessation of these stimuli. CM-responses to 60-61 kHz tone bursts show a prominent input-output non-linearity and transients. Accordingly, a summated response of primary auditory neurones (N1) appears not only at the onset of the stimuli, but also at the cessation. N1-off is sharply tuned at 60-61 kHz, while N1-on is tuned at 63-64 kHz, which is 2 kHz higher than the best frequency of the auditory system because of the envelope-distortion originating from sharp mechanical tuning. Single peripheral neurones sensitive to 61-62 kHz sounds have an unusually sharp tuning curve and show phase-locked responses to beats of up to 3 kHz. Information about the frequencies of Doppler-shifted echoes is thus coded by a set of sharply tuned neurones and also discharges phase-locked to beats. Neurones with a best frequency between 55 and 64 kHz show not only tonic on-responses but also off-responses which are apparently related to the mechanical off-transient occuring in the inner ear and not to a rebound from neural inhibition.  相似文献   

8.
Summary Physiological recordings were obtained from identified receptors in the tympanal organ ofGryllus bimaculatus. By immersing the prothoracic leg in Ringer solution and removing the anterior tympanic membrane the auditory receptors were exposed without significantly altering the frequency response of the auditory organ (Fig. 1). Each receptor was tuned to a specific sound frequency. For sound frequencies below this characteristic frequency the roll-off in sensitivity decreased from 20–30 dB/octave to 10–15 dB/octave as the characteristic frequency of receptors increased from 3–11 kHz (Fig. 4A). For each individual receptor the slope, dynamic range and maximum spike response were similar for different sound frequencies (Fig. 9A). The receptors were tonotopically organized with the characteristic frequency of the receptors increasing from the proximal to the distal end of the array (Figs. 5, 6). Several receptors had characteristic frequencies of 5 kHz. These receptors were divided into two groups on the basis of their maximum spike response produced in response to pure tones of increasing intensity (Fig. 7). Independent of the tuning of the receptor no two-tone inhibition was observed in the periphery, thus confirming that such interactions are a property of central integration.  相似文献   

9.
长江航运业的快速发展导致长江中船舶数量激增,相应的水体噪声污染可能对同水域的长江江豚(Neophocaena asiaeorientalis asiaeorientalis)产生一定的负面影响,本研究采用宽频录音设备对长江和畅洲北汊非正式通航江段的各类常见大型船舶(长>15m且宽>5m)的航行噪声进行了记录,并分析其峰值-峰值声压级强度(SPLp-p)和功率谱密度(PSD)等。结果表明,大型船舶的航行噪声能量分布频率范围较广(>100kHz),但主要集中于中低频(<10kHz)部分,各频率(20Hz~144kHz)处的均方根声压级(SPLrms)对环境背景噪声在该频率处的噪声增量范围为3.7~66.5dB。接收到的1/3倍频程声压级(TOL)在各频率处都大于70dB,在8~140kHz频段内都高于长江江豚的听觉阈值。说明大型船舶的航行噪声可能会对长江江豚个体间的声通讯及听觉带来不利影响,如听觉掩盖。  相似文献   

10.
Summary The cochlea of the mole rat Cryptomys hottentotus was investigated with physiological and anatomical methods. In order to reveal the place-frequency map of the cochlea, iontophoretic HRP-applications were made in the cochlear nucleus at physiologically characterized locations. Subsequent HRP-transport in auditory nerve fibres and labeling patterns of spiral ganglion cells within the cochlea were evaluated.A cochlear place-frequency map was constructed from 17 HRP-applications in the cochlear nucleus at positions where neurons had characteristic frequencies between 0.1 and 12.6 kHz. As in other mammals, high frequencies were found to be represented at the cochlear base, low frequencies at the cochlear apex. The placefrequency map had three distinct parts which were characterized by their different slopes. A clear overrepresentation of the frequencies between 0.6 and 1 kHz was revealed, in this frequency range the slope of the place-frequency map amounted to 5.3 mm/octave. As calculated from the regression analysis, below 0.6 kHz the slope of the cochlear place-frequency map amounted to 0.24 mm/octave, above 1 kHz to 0.9 mm/octave.As in other mammals width of the basilar membrane (BM) increased from the cochlear base towards the cochlear apex. Also in concordance with the findings in other mammals, BM-thickness decreased from the cochlear base to the apex. However, it was remarkable to find that there was no or little change in BM-width and thickness between 40 and 85% BM-length. It was also revealed that scala tympani was only 1/10th the size found in the rat or other mammals of similar body size.On the basis of the cochlear place-frequency map and the morphological findings we speculate that in Cryptomys hottentotus an acoustic fovea is present in the frequency range between 0.6 and 1 kHz. In analogy to echolocating bats, about half of the cochlea is devoted to the analysis of a narrow frequency band within the hearing range.Abbreviations BM basilar membrane - CF characteristic frequency - CN cochlear nucleus  相似文献   

11.
《Biophysical journal》2020,118(5):1183-1195
Cochlear amplification of basilar membrane traveling waves is thought to occur between a tone’s characteristic frequency (CF) place and within one octave basal of the CF. Evidence for this view comes only from the cochlear base. Stimulus-frequency otoacoustic emissions (SFOAEs) provide a noninvasive alternative to direct measurements of cochlear motion that can be measured across a wide range of CF regions. Coherent reflection theory indicates that SFOAEs arise mostly from the peak region of the traveling wave, but several studies using far-basal suppressor tones claimed that SFOAE components originate many octaves basal of CF. We measured SFOAEs while perfusing guinea pig cochleas from apex to base with salicylate or KCl solutions that reduced outer-hair-cell function and SFOAE amplification. Solution effects on inner hair cells reduced auditory nerve compound action potentials (CAPs) and provided reference times for when solutions reached the SFOAE-frequency CF region. As solution flowed from apex to base, SFOAE reductions generally occurred later than CAP reductions and showed that the effects of cochlear amplification usually peaked ∼1/2 octave basal of the CF region. For tones ≥2 kHz, cochlear amplification typically extended ∼1.5 octaves basal of CF, and the data are consistent with coherent reflection theory. SFOAE amplification did not extend to the basal end of the cochlea, even though reticular lamina motion is amplified in this region, which indicates that reticular lamina motion is not directly coupled to basilar membrane traveling waves. Previous reports of SFOAE-frequency residuals produced by suppressor frequencies far above the SFOAE frequency are most likely due to additional sources created by the suppressor. For some tones <2 kHz, SFOAE amplification extended two octaves apical of CF, which highlights that different vibratory motions produce SFOAEs and CAPs, and that the amplification region depends on the cochlear mode of motion considered. The concept that there is a single “cochlear amplification region” needs to be revised.  相似文献   

12.
应用微电极技术测定了45只大鼠325根单一听神经纤维的特征频率及其阈值和调谐曲线。测得特征频率的最低值为0.58kHz,最高值为62.6kHz。敏感度最高的频带在20~50kHz,敏感度最高的阈值为6dB(SPL),其相应的频率为27.49kHz。由最低阈值连线延续到边侧的调谐曲线,便形成了大鼠整个的听反应阈曲线。该听反应阈曲线与行为测听所观察到的听力曲线近似。  相似文献   

13.
Chronic tinnitus, or “ringing of the ears”, affects upwards of 15% of the adult population. Identifying a cost-effective and objective measure of tinnitus is needed due to legal concerns and disability issues, as well as for facilitating the effort to assess neural biomarkers. We developed a modified gap-in-noise (GIN) paradigm to assess tinnitus in mice using the auditory brainstem response (ABR). We then compared the commonly used acoustic startle reflex gap-prepulse inhibition (gap-PPI) and the ABR GIN paradigm in young adult CBA/CaJ mice before and after administrating sodium salicylate (SS), which is known to reliably induce a 16 kHz tinnitus percept in rodents. Post-SS, gap-PPI was significantly reduced at 12 and 16 kHz, consistent with previous studies demonstrating a tinnitus-induced gap-PPI reduction in this frequency range. ABR audiograms indicated thresholds were significantly elevated post-SS, also consistent with previous studies. There was a significant increase in the peak 2 (P2) to peak 1 (P1) and peak 4 (P4) to P1 amplitude ratios in the mid-frequency range, along with decreased latency of P4 at higher intensities. For the ABR GIN, peak amplitudes of the response to the second noise burst were calculated as a percentage of the first noise burst response amplitudes to quantify neural gap processing. A significant decrease in this ratio (i.e. recovery) was seen only at 16 kHz for P1, indicating the presence of tinnitus near this frequency. Thus, this study demonstrates that GIN ABRs can be used as an efficient, non-invasive, and objective method of identifying the approximate pitch and presence of tinnitus in a mouse model. This technique has the potential for application in human subjects and also indicates significant, albeit different, deficits in temporal processing in peripheral and brainstem circuits following drug induced tinnitus.  相似文献   

14.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

15.
The auditory responsiveness of a number of neurones in the meso- and metathoracic ganglia of the locust, Locusta migratoria, was found to change systematically during concomitant wind stimulation. Changes in responsiveness were of three kinds: a suppression of the response to low frequency sound (5 kHz), but an unchanged or increased response to high frequency (12 kHz) sound; an increased response to all sound; a decrease in the excitatory, and an increase in the inhibitory, components of a response to sound. Suppression of the response to low frequency sound was mediated by wind, rather than by the flight motor. Wind stimulation caused an increase in membrane conductance and concomitant depolarization in recorded neurones. Wind stimulation potentiated the spike response to a given depolarizing current, and the spike response to a high frequency sound, by about the same amount. The strongest wind-related input to interneuron 714 was via the metathoracic N6, which carries the axons of auditory receptors from the ear. The EPSP evoked in central neurones by electrical stimulation of metathoracic N6 was suppressed by wind stimulation, and by low frequency (5 kHz), but not high frequency (10 kHz), sound. This suppression disappeared when N6 was cut distally to the stimulating electrodes. Responses to low frequency (5 kHz), rather than high frequency (12 kHz), sounds could be suppressed by a second low frequency tone with an intensity above 50-55 dB SPL for a 5 kHz suppressing tone. Suppression of the electrically-evoked EPSP in neurone 714 was greatest at those sound frequencies represented maximally in the spectrum of the locust's wingbeat. It is concluded that the acoustic components of a wind stimulus are able to mediate both inhibition and excitation in the auditory pathway. By suppressing the responses to low frequency sounds, wind stimulation would effectively shift the frequency-response characteristics of central auditory neurones during flight.  相似文献   

16.
The responses of 682 single-units in the inferior colliculus (IC) of 13 mustached bats (Pteronotus parnellii parnellii) were measured using pure tones (CF), frequency modulations (FM) and pairs of CF-FM signals mimicking the species' biosonar signal, which are stimuli known to be essential to the responses of CF/CF and FM-FM facilitation neurons in auditory cortex. Units were arbitrarily classified into 'reference frequency' (RF), 'FM2' and 'Non-echolocation' (NE) categories according to the relationship of their best frequencies (BF) to the biosonar signal frequencies. RF units have high Q10dB values and are tuned to the reference frequency of each bat, which ranged between 60.73 and 62.73 kHz. FM2 units had BF's between 50 and 60 kHz, while NE units had BF's outside the ranges of the RF and FM2 classes. PST histograms of the responses revealed discharge patterns such as 'onset', 'onset-bursting' (most common), 'on-off', 'tonic-on','pauser', and 'chopper'. Changes in discharge patterns usually resulted from changes in the frequency and/or intensity of the stimuli, most often involving a change from onset-bursting to on-off. Different patterns were also elicited by CF and FM stimuli. Frequency characteristics and thresholds to CF and FM stimuli were measured. RF neurons were very sharply tuned with Q10dB's ranging from 50-360. Most (92%) also responded to FM2 stimuli, but 78% were significantly more sensitive (greater than 5 dB) to CF stimuli, and only 3% had significantly lower thresholds to FM2. The best initial frequency for FM2 sweeps in RF units was 65.35 +/- 2.138 kHz (n = 118), well above the natural frequency of the 2nd harmonic. FM2 and NE units were indistinguishable from each other, but were quite different from RF units: 41% of these two classes had lower thresholds to CF, 49% were about equally sensitive, and 10% had lower thresholds to FM. For FM2 units, mean best initial frequency for FM was 60.94 kHz +/- 3.162 kHz (n = 114), which is closely matched to the 2nd harmonic in the biosonar signal. Very few units (5) responded only to FM signals, i.e., were FM-specialized. The characteristics of spike-count functions were determined in 587 units. The vast majority (79%) of RF units (n = 228) were nonmonotonic, and about 22% had upper-thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary Single unit recordings of primary auditory fibers ofTeleogryllus oceanicus show responses to frequencies over the range 0.5 kHz to 42 kHz. The characteristic frequencies (ChFs) of units were distributed over much of the bandwidth investigated although few units were recorded with ChFs below 4 kHz or in the region 7 kHz to 10 kHz. Some units showed more than one peak of sensitivity and others were broad-banded with no tuning to a particular frequency. Units whose ChFs approximated to the carrier frequency (CF) of the proclamation song were the most highly tuned. The majority of units had a tonic response pattern and were not spontaneously active. The implications of these findings are discussed.Abbreviations ChF characteristic frequency - CF carrier frequency We thank Mr. P. Foster for techninical help.  相似文献   

18.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

19.
利用听觉诱发电位和计算机叠加平均技术研究了普氏蹄蝠下丘(Inferior colliculus,IC)500-4 000 μm 记录深度间,神经元群对3 个谐波恒频(Constant frequency,CF) 声刺激(CF1 -CF3 )的反应。结果显示,在蝙蝠回声定位信号CF 成分刺激下,其IC 的诱发电位包括2 -4 个波,在1 000 μm 以下的记录区域,3 种刺激均能诱发on-off 反应,on-反应的幅度均在3 000 μm 达最大之后减小(P < 0.001),而潜伏期则逐渐缩短(P < 0.001);CF2 能诱发大幅度的off-反应,而CF1 、CF3 诱发的off-反应幅度较小,随着记录深度的增加,CF2 (P <0. 001)的off-反应潜伏期逐渐缩短,而CF1 (P > 0. 05)和CF3 (P >0. 05)的潜伏期则无此单调性。结果表明神经元群体加工CF1 - CF3 的on-反应存在一致性变化,提示其对行为相关的声信号加工可能存在频率层间复杂的相互作用;对CF 信号加工的off-反应对主频附近声较敏感,提示其可能在恒频-调频蝙蝠的多普勒频移、捕获振翅昆虫信息或种间交流中起着某种作用。  相似文献   

20.
Schaette R  Turtle C  Munro KJ 《PloS one》2012,7(6):e35238
Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from <10 dB at 0.25 kHz to >30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号