首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yokoyama S  Kato K  Koba A  Minami Y  Watanabe K  Yagi F 《Peptides》2008,29(12):2110-2117
Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI–TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0–8.9 μg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.  相似文献   

2.
Lantibiotics are antibiotic peptides that contain the rare thioether amino acids lanthionine and/or methyllanthionine. Epidermin, Pep5 and epilancin K7 are produced by Staphylococcus epidermidis whereas gallidermin (6L-epidermin) was isolated from the closely related species Staphylococcus gallinarum. The biosynthesis of all four lantibiotics proceeds from structural genes which code for prepeptides that are enzymatically modified to give the mature peptides. The genes involved in biosynthesis, processing, export etc. are found in gene clusters adjacent to the structural genes and code for transporters, immunity functions, regulatory proteins and the modification enzymes LanB, LanC and LanD, which catalyze the biosynthesis of the rare amino acids. LanB and LanC are responsible for the dehydration of the serine and threonine residues to give dehydroalanine and dehydrobutyrine and subsequent addition of cysteine SH-groups to the dehydro amino acids which results in the thioether rings. EpiD, the only LanD enzyme known so far, catalyzes the oxidative decarboxylation of the C-terminal cysteine of epidermin which gives the C-terminal S-aminovinylcysteine after addition of a dehydroalanine residue.Abbreviations Dha 2,3-didehydroalanine - Dhb 2,3-didehydrobutyrine - Lan lanthionine - Melan methyllanthionine  相似文献   

3.
Novel antimicrobial peptides (AMP), designated Fa-AMP1 and Fa-AMP2, were purified from the seeds of buckwheat (Fagopyrum esculentum Moench.) by gel filtration on Sephadex G75, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They were basic peptides having isoelectric points of over 10. Fa-AMP1 and Fa-AMP2 had molecular masses of 3,879 Da and 3,906 Da on MALDI-TOF MS analysis, and their extinction coefficients in 1% aqueous solutions at 280 nm were 42.8 and 38.9, respectively. Half of all amino acid residues of Fa-AMP1 and Fa-AMP2 were cysteine and glycine, and they had continuous sequences of cysteine and glycine. The concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, and Gram-positive and -negative bacteria were 11 to 36 μg/ml. The structural and antimicrobial characteristics of Fa-AMPs indicated that they are a novel type of antimicrobial peptides belonging to a plant defensin family.  相似文献   

4.
Angiotensin I-converting enzyme (ACE) inhibitory peptide from silkworm pupa (Bombyx mori) was purified, modified, as well as inhibition mechanism by using molecular docking analysis. Silkworm pupa protein was hydrolyzed by neutral protease and the obtained hydrolysate was subjected to various types of chromatography to acquire peptide isolate. Then the molecular mass and amino acid sequence of the peptide was determined by MALDI-TOF/TOF MS. Subsequently, thermal and digestive stability of the peptide were explored through a high temperature processing and a simulated gastrointestinal digestion. Finally, the peptide was modified to smaller peptides and investigated their potentiate activities. Results showed that the peptide from silkworm pupa was determined to be Gly-Asn-Pro-Trp-Met (603.7 Da) with IC50 21.70 μM. Stability testing showed that ACE inhibitory activities were not significantly changed at temperature from 40 to 80 °C as well as during in vitro gastrointestinal digestion. The inhibitory activity of four modified peptides were Trp-Trp > Gly-Asn-Pro-Trp-Trp > Asn-Pro-Trp-Trp > Pro-Trp-Trp, and the IC50 of Trp-Trp was 10.76 μM Docking simulation revealed that the inhibitory activity was closely related to the spatial structure of peptide and zinc ions. The purified peptide and four modified peptides may be beneficial as functional food or drug for treating hypertension.  相似文献   

5.
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pKa of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pKa of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (ΔΔG°H2O = 9 kJ/mol and ΔTm = 7. 4 °C) than for Trx1 (ΔΔG°H2O = 15 kJ/mol and ΔTm = 13 °C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn2+-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pKa of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn2+ also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn2+-center of Trx2 fine-tunes the properties of this unique thioredoxin.  相似文献   

6.
Protein derived from the rotifer Brachionus rotundiformis was hydrolyzed using different proteases (Alcalase, α-chymotrypsin, Neutrase, papain, pepsin and trypsin) for production of antioxidant peptide. Antioxidant activities of hydrolysates were evaluated using DPPH radical scavenging activity. Peptic hydrolysate exhibited the highest antioxidative activity compared to other hydrolysates. To identify antioxidant peptides, peptic hydrolysate was purified using consecutive chromatographic methods, and antioxidant peptides were identified to be Leu-Leu-Gly-Pro-Gly-Leu-Thr-Asn-His-Ala (1076 Da), and Asp-Leu-Gly-Leu-Gly-Leu-Pro-Gly-Ala-His (1033 Da) by Q-TOF ESI mass spectroscopy. EC50 values of purified peptides were 189.8 and 167.7 μM, respectively. Antioxidant activities of peptides purified from the rotifer protein hydrolysate were evaluated, with results showing that peptides significantly quenched free radicals.  相似文献   

7.
Sulfide:quinone oxidoreductase from the acidophilic and chemolithotrophic bacterium Acidithiobacillus ferrooxidans was expressed in Escherichia coli and crystallized, and its X-ray molecular structure was determined to 2.3 Å resolution for native unbound protein in space group P42212 . The decylubiquinone-bound structure and the Cys160Ala variant structure were subsequently determined to 2.3 Å and 2.05 Å resolutions, respectively, in space group P6222  . The enzymatic reaction catalyzed by sulfide:quinone oxidoreductase includes the oxidation of sulfide compounds H2S, HS, and S2− to soluble polysulfide chains or to elemental sulfur in the form of octasulfur rings; these oxidations are coupled to the reduction of ubiquinone or menaquinone. The enzyme comprises two tandem Rossmann fold domains and a flexible C-terminal domain encompassing two amphipathic helices that are thought to provide for membrane anchoring. The second amphipathic helix unwinds and changes its orientation in the hexagonal crystal form. The protein forms a dimer that could be inserted into the membrane to a depth of approximately 20 Å. It has an endogenous flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the N-terminal domain. Several wide channels connect the FAD cofactor to the exterior of the protein molecule; some of the channels would provide access to the membrane. The ubiquinone molecule is bound in one of these channels; its benzoquinone ring is stacked between the aromatic rings of two conserved Phe residues, and it closely approaches the isoalloxazine moiety of the FAD cofactor. Two active-site cysteine residues situated on the re side of the FAD cofactor form a branched polysulfide bridge. Cys356 disulfide acts as a nucleophile that attacks the C4A atom of the FAD cofactor in electron transfer reaction. The third essential cysteine Cys128 is not modified in these structures; its role is likely confined to the release of the polysulfur product.  相似文献   

8.
Inhibitory activity against subtilisin, proteinase K, chymotrypsin and trypsin was detected in the salivary glands and saliva of the cockroach Nauphoeta cinerea (Blattoptera: Blaberidae). Fractionation of the salivary glands extract by affinity chromatography followed by reverse-phase HPLC yielded five subtilisin-inhibiting peptides with molecular masses ranging from 5 to 14 kDa. N-terminal sequences and subsequently full-length cDNAs of inhibitors designated NcPIa and NcPIb were obtained. The NcPIa cDNA contains 216 nucleotides and encodes a pre-peptide of 72 amino-acid residues of which 19 make up the signal peptide. The cDNA of NcPIb consists of 240 nucleotides and yields a putative secretory peptide of 80 amino-acid residues. Mature NcPIa (5906.6 Da, 53 residues) and NcPIb (6713.3 Da, 60 residues) are structurally similar (65.4% amino acid overlap) single-domain Kazal-type peptidase inhibitors. NcPIa with Arg in P1 position and typical Kazal motif VCGSD interacted stoichiometrically (1:1) with subtilisin and was slightly less active against proteinase K. NcPIb with Leu in P1 and modified Kazal motif ICGSD had similar activity on subtilisin and no on proteinase K but was active on chymotrypsin.  相似文献   

9.
Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25–65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.  相似文献   

10.
1. A diagonal electrophoretic technique for studying the amino acid sequence around cysteine and cystine residues in proteins is described. The residues are first converted into S-aminoethylcysteine, and the protein is then treated with S-ethyl trifluorothioacetate, which trifluoroacetylates all the protein amino groups. The modified protein is digested enzymically and the resulting peptides are separated by paper electrophoresis. After exposure of the peptides on the paper to ammonia vapour, the electrophoresis is repeated, this time at right angles to the original direction. Peptides from which a trifluoroacetyl group is removed by the ammonia treatment will vacate the 45° diagonal formed by all other unaffected peptides owing to the exposure of an additional amino group and consequent increased electrophoretic mobility towards the cathode. Peptides containing lysine or S-aminoethylcysteine are readily purified by this technique. 2. The successful application of the technique to bovine insulin is described. 3. Various methods for distinguishing peptides containing lysine from those containing S-aminoethylcysteine in more complicated proteins are suggested and discussed.  相似文献   

11.
12.
In the current study, two peptides with antioxidant properties were purified from skin protein hydrolysates of horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber) by consecutive chromatographic fractionations including ion exchange chromatography and gel filtration chromatography. By electron spray ionization double mass spectrometry (ESI-MS/MS), the sequence of the peptide from the skin protein hydrolysate of horse mackerel was identified to be Asn-His-Arg-Tyr-Asp-Arg (856 Da) and that of croaker to be Gly-Asn-Arg-Gly-Phe-Ala-Cys-Arg-His-Ala (1101.5 Da). The antioxidant activity of these peptides was tested by electron spin resonance (ESR) spectrometry using 1-diphenyl-2-picryl hydrazyl (DPPH·) and hydroxyl (OH·) radical scavenging assays. Both peptides exhibited higher activity against polyunsaturated fatty acid (PUFA) peroxidation than the natural antioxidant α-tocopherol. These results suggest that the two peptides isolated from the skin protein hydrolysates of horse mackerel and croaker are potent antioxidants and may be effectively used as food additives and as pharmaceutical agents.  相似文献   

13.
The psaA and psaB genes of the chloroplast genome in oxygenic photosynthetic organisms code for the major peptides of the Photosystem 1 reaction center. A heterodimer of the two polypeptides PsaA and PsaB is thought to bind the reaction center chlorophyll, P700, and the early electron acceptors A0, A1 and Fe-SX. Fe-SX is a 4Fe4S center requiring 4 cysteine residues as ligands from the protein. As PsaA and PsaB have only three and two conserved cysteine residues respectively, it has been proposed by several groups that Fe-SX is an unusual inter-peptide center liganded by two cysteines from each peptide. This hypothesis has been tested by site directed mutagenesis of PsaA residue C575 and the adjacent D576. The C575D mutant does not assemble Photosystem 1. The C575H mutant contains a photoxidisable chlorophyll with EPR properties of P700, but no other Photosystem 1 function has been detected. The D576L mutant assembles a modified Photosystem 1 in which the EPR properties of the Fe-SA/B centers are altered. The results confirm the importance of the conserved cysteine motif region in Photosystem 1 structure.Dedicated to the memory of Daniel I. Arnon.  相似文献   

14.
α-Casein group of proteins makes up to 65% of the total casein and consists of αS1- casein, αS2- casein and other related proteins. Among all the proteases employed, chymotryptic peptides showed maximum inhibition for angiotensin converting enzyme (ACE). The degree of hydrolysis and release kinetics of the peptides during chymotrypsin hydrolysis was compared with biological activity and the potent peptides fractions were identified. The crude fraction obtained after 110 min of hydrolysis shows multifunctional activities, like ACE inhibition, antioxidant activity, prolyl endopeptidase inhibitory activity and antimicrobial activities. This fraction was further purified by HPLC and sequenced by mass spectra. This fraction constituted peptides with molecular weights of 1,205, 1,718 Da respectively. The sequencing of peptides by MALDI-TOF MS/MS shows sequences QKALNEINQF and TKKTKLTEEEKNRL from α-S2 casein.  相似文献   

15.
16.
Chatergellus communis is a wasp species endemic to the neotropical region and its venom constituents have never been described. In this study, two peptides from C. communis venom, denominated Communis and Communis-AAAA, were chemically and biologically characterized. In respect to the chemical characterization, the following amino acid sequences and molecular masses were identified:Communis: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-COOH (1340.9 Da)Communis-AAAA: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-Ala-Ala-Ala-Ala-Val-Xle-NH2 (1836.3 Da).Furthermore, their biological effects were compared, accounting for the differences in structural characteristics between the two peptides. To this end, three biological assays were performed in order to evaluate the hyperalgesic, edematogenic and hemolytic effects of these molecules. Communis-AAAA, unlike Communis, showed a potent hemolytic activity with EC50 = 142.6 μM. Moreover, the highest dose of Communis-AAAA (2nmol/animal) induced hyperalgesia in mice. On the other hand, Communis (10nmol/animal) was able to induce edema but did not present hemolytic or hyperalgesic activity. Although both peptides have similarities in linear structures, we demonstrated the distinct biological effects of Communis and Communis-AAAA. This is the first study with Chartegellus communis venom, and both Communis and Communis-AAAA are unpublished peptides.  相似文献   

17.
Eosinophil granule major basic protein 2 (MBP2 or major basic protein homolog) is a paralog of major basic protein (MBP1) and, similar to MBP1, is cytotoxic and cytostimulatory in vitro. MBP2, a small protein of 13,433 Da molecular weight, contains 10 cysteine residues. Mass spectrometry shows two cystine disulfide linkages (Cys20–Cys115 and Cys92–Cys107) and 6 cysteine residues with free sulfhydryl groups (Cys2, Cys23, Cys42, Cys43, Cys68, and Cys96). MBP2, similar to MBP1, has conserved motifs in common with C-type lectins. The disulfide bond locations are conserved among human MBP1, MBP2 and C-type lectins.  相似文献   

18.
Phytohemagglutinin, the glycoprotein lectin of the common bean, Phaseolus vulgaris, has both high-mannose (Man8-9GlcNAc2) and modified oligosaccharide side chains. The modified side chains have glucosamine, mannose, fucose, and xylose in the molar ratios 2:3.8:0.6:0.5, and are resistant to hydrolysis by endoglycosidase H. Synthesis and processing of side chains in the presence of 1-deoxynojirimycin, an inhibitor of α-glucosidase, results in the formation of chains which are all alike. They are sensitive to endoglycosidase H, do not contain fucose, and are largely resistant to α-mannosidase. This indicates that they are probably high-mannose chains blocked by terminal glucose residues. Synthesis and processing of side chains in the presence of swainsonine, an inhibitor of α-mannosidase II, results in the formation of normal high-mannose chains, and of modified chains which contain fucose residues, are resistant to endoglycosidase H, and can be distinguished from normal modified chains only by the presence of extra mannose residues.

Processing of the phytohemagglutinin modified chains of PHA under normal conditions involves the attachment of peripheral N-acetylglucosamine residues in the Golgi complex and their subsequent removal in the protein bodies. The attachment of the N-acetylglucosamine residues is largely inhibited by deoxynojirimycin but still occurs in the presence of swainsonine. The results presented in this work show that processing of the asparagine-linked oligosaccharides is under the control of several glycosidases and glycosyltransferases and involves the formation of intermediate products.

  相似文献   

19.
The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ–N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ–N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.  相似文献   

20.
Merozoite surface protein 2 (MSP2) from the human malaria parasite Plasmodium falciparum is expressed as a GPI-anchored protein on the merozoite surface. MSP2 is assumed to have a role in erythrocyte invasion and is a leading vaccine candidate. Recombinant MSP2 forms amyloid-like fibrils upon storage, as do peptides corresponding to sequences in the conserved N-terminal region, which constitutes the structural core of fibrils formed by full-length MSP2. We have investigated the roles of individual residues in fibril formation and local ordered structure in two peptides, a recombinant 25-residue peptide corresponding to the entire N-terminal domain of mature MSP2 and an 8-residue peptide from the central region of this domain (residues 8–15). Both peptides formed fibrils that were similar to amyloid-like fibrils formed by full-length MSP2. Phe11 and Ile12 have important roles both in stabilising local structure in these peptides and promoting fibril formation; the F11A and I12A mutants of MSP28–15 were essentially unstructured in solution and fibril formation at pH 7.4 and 4.7 was markedly retarded. The T10A mutant showed intermediate behaviour, having a less well defined structure than wild-type and slower fibril formation at pH 7.4. The mutation of Phe11 and Ile12 in MSP21–25 significantly retarded but did not abolish fibril formation, indicating that these residues also play a key role in fibril formation by the entire N-terminal conserved region. These mutations had little effect on the aggregation of full-length MSP2, however, suggesting that regions outside the conserved N-terminus have unanticipated importance for fibril formation in the full-length protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号