首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.  相似文献   

2.

Aims

Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet.

Methods and Results

apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression.

Conclusion

These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.  相似文献   

3.

Objective

Chronic stress is an important risk factor for atherosclerotic diseases. Our previous studies have shown that chronic unpredictable mild stress (CUMS) accelerates atherosclerosis and up-regulates TLR4/NF-κB expression in apoE-/- mice. However, TLR4/NF-κB signaling whether directly contributes to the development of atherosclerosis in CUMS mice is unclear. We hypothesized that the interference of TLR4/NF-κB can ameliorate CUMS-induced inflammation and atherosclerosis in apoE-/- mice.

Methods

ApoE-/- mice were exposed to 12 weeks CUMS. Ad-siRNA TLR4 was given by tail vein injection (10 μl/mouse, every 5 days), and PDTC (an inhibitor of NF-κB) was given by intraperitoneal injection (60 mg/kg, once a day). Plasma corticosterone concentrations were determined by solid-phase 125I radioimmunoassay. Atherosclerosis lesions in aortic sinuses were evaluated and quantified by IMAGEPRO PLUS. Western blotting was used to detect the expression of TLR4, NF-κB, and IL-1β in aortas of the mice. Plasma lipid profiles, IL-1β, TNF-α, and MCP-1 were measured by ELISA.

Results

Our results indicated that CUMS apoE-/- mice treatment with siRNA TLR4 significantly decreased atherosclerosis and down-regulated TLR4, NF-κB, and inflammatory cytokines. PDTC also remarkably reduced atherosclerosis and the levels of IL-1β, TNF-α and MCP-1 in plasma. However, Treatment with siRNA TLR4 or PDTC had no effect on plasma corticosterone levels, and lipid profiles.

Conclusions

TLR4/NF-κB pathway may participate in CUMS-induced atherosclerosis through activation of proinflammatory cytokines in apoE-/- mice. Our data may provide a new potential therapeutic target for prevention of CUMS -induced atherosclerosis.  相似文献   

4.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

5.
6.
The catalytical isoforms p110γ and p110δ of phosphatidylinositide 3-kinase γ (PI3Kγ) and PI3Kδ play an important role in the pathogenesis of asthma. Two key elements in allergic asthma are increased levels of eosinophils and IgE. Dual pharmacological inhibition of p110γ and p110δ reduces asthma-associated eosinophilic lung infiltration and ameliorates disease symptoms, whereas the absence of enzymatic activity in p110γKOδD910A mice increases IgE and basal eosinophil counts. This suggests that long-term inhibition of p110γ and p110δ might exacerbate asthma. Here, we analysed mice genetically deficient for both catalytical subunits (p110γ/δ-/-) and determined basal IgE and eosinophil levels and the immune response to ovalbumin-induced asthma. Serum concentrations of IgE, IL-5 and eosinophil numbers were significantly increased in p110γ/δ-/- mice compared to single knock-out and wildtype mice. However, p110γ/δ-/- mice were protected against OVA-induced infiltration of eosinophils, neutrophils, T and B cells into lung tissue and bronchoalveolar space. Moreover, p110γ/δ-/- mice, but not single knock-out mice, showed a reduced bronchial hyperresponsiveness. We conclude that increased levels of eosinophils and IgE in p110γ/δ-/- mice do not abolish the protective effect of p110γ/δ-deficiency against OVA-induced allergic airway inflammation.  相似文献   

7.
Atlantic salmon (Salmo salar) with an initial mass of 86 g were reared in 12 °C seawater for 8 weeks to a final average mass of 250 g. The fish were fed fish meal and fish oil-based diet supplemented with either 0%, 0.3% or 0.6% of tetradecylthioacetic acid (TTA), a 3-thia fatty acid. The specific growth rate (SGR) decreased with increasing dietary dose of TTA. The SGR of the group fed 0% of TTA (Control) was 1.8; that of the group fed 0.3% of TTA (TTA-L) was 1.7, and that of the group fed 0.6% of TTA (TTA-H) was 1.5. The mortality increased with increased dietary dose of TTA. The mitochondrial β-oxidation capacity in the liver of fish fed the TTA diets was 1.5 to 2 times higher than that of the Control fish. TTA supplementation caused substantial changes in the fatty acid compositions of the phospholipids (PL), triacylglycerols (TAG) and free fatty acids (FFA) of gills, heart and liver. The percentages of n−3 fatty acids, particularly 22:6 n−3, increased in fish fed diets containing TTA, while the percentage of the saturated FAs 14:0 and 16:0 in the PL fractions of the gills and heart decreased. The sum of monounsaturated FAs in the PL and TAG fractions from liver was significantly higher in fish fed diets containing TTA. TTA itself was primarily incorporated into PL. Two catabolic products of TTA (sulphoxides of TTA) were identified, and these products were particularly abundant in the kidney. TTA supplementation had no significant effect on the activity of the membrane-bound enzyme Na+,K+-ATPase.  相似文献   

8.

Background

Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα).

Methodology/Principal Findings

Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides.

Conclusions/Significance

Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.  相似文献   

9.
CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis) using IFN-γ-gene-knockout (IFN-γ-/-) mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load.  相似文献   

10.
African trypanosomes are extracellular protozoan parasites causing a chronic debilitating disease associated with a persistent inflammatory response. Maintaining the balance of the inflammatory response via downregulation of activation of M1-type myeloid cells was previously shown to be crucial to allow prolonged survival. Here we demonstrate that infection with African trypanosomes of IL-27 receptor-deficient (IL-27R-/-) mice results in severe liver immunopathology and dramatically reduced survival as compared to wild-type mice. This coincides with the development of an exacerbated Th1-mediated immune response with overactivation of CD4+ T cells and strongly enhanced production of inflammatory cytokines including IFN-γ. What is important is that IL-10 production was not impaired in infected IL-27R-/- mice. Depletion of CD4+ T cells in infected IL-27R-/- mice resulted in a dramatically reduced production of IFN-γ, preventing the early mortality of infected IL-27R-/- mice. This was accompanied by a significantly reduced inflammatory response and a major amelioration of liver pathology. These results could be mimicked by treating IL-27R-/- mice with a neutralizing anti-IFN-γ antibody. Thus, our data identify IL-27 signaling as a novel pathway to prevent early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretion of IFN-γ during infection with African trypanosomes. These data are the first to demonstrate the essential role of IL-27 signaling in regulating immune responses to extracellular protozoan infections.  相似文献   

11.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

12.
Recent studies have suggested that miR-590 may play critical roles in cardiovascular disease. This study was designed to determine the effects of miR-590 on lipoprotein lipase (LPL) expression and development of atherosclerosis in apolipoprotein E knockout (apoE−/−) mice and explore the potential mechanisms. En face analysis of the whole aorta revealed that miR-590 significantly decreased aortic atherosclerotic plaque size and lipid content in apoE−/− mice. Double immunofluorescence staining in cross-sections of the proximal aorta showed that miR-590 agomir reduced CD68 and LPL expression in macrophages in atherosclerotic lesions. MiR-590 agomir down-regulated LPL mRNA and protein expression as analyzed by RT-qPCR and western blotting analyses, respectively. Consistently, miR-590 decreased the expression of CD36 and scavenger receptor A1 (SRA1) mRNA and protein. High-performance liquid chromatography (HPLC)analysis confirmed that treatment with miR-590 agomir reduced lipid levels either in plasma orinabdominal cavity macrophages of apoE−/− mice. ELISA analysis showed that miR-590 agomir decreased plasma levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-1β (IL-1β)and interleukin-6 (IL-6). In contrast, treatment with miR-590 antagomir prevented or reversed these effects. Taken together, these results reveal a novel mechanism of miR-590 effects, and may provide new insights into the development of strategies for attenuating lipid accumulation and pro-inflammatory cytokine secretion.  相似文献   

13.
The role of IL-1β and IL-18 during lung infection with the gram-negative bacterium Francisella tularensis LVS has not been characterized in detail. Here, using a mouse model of pneumonic tularemia, we show that both cytokines are protective, but through different mechanisms. Il-18-/- mice quickly succumb to the infection and showed higher bacterial burden in organs and lower level of IFNγ in BALF and serum compared to wild type C57BL/6J mice. Administration of IFNγ rescued the survival of Il-18-/- mice, suggesting that their decreased resistance to tularemia is due to inability to produce IFNγ. In contrast, mice lacking IL-1 receptor or IL-1β, but not IL-1α, appeared to control the infection in its early stages, but eventually succumbed. IFNγ administration had no effect on Il-1r1-/- mice survival. Rather, Il-1r1-/- mice were found to have significantly reduced titer of Ft LPS-specific IgM. The anti-Ft LPS IgM was generated in a IL-1β-, TLR2-, and ASC-dependent fashion, promoted bacteria agglutination and phagocytosis, and was protective in passive immunization experiments. B1a B cells produced the anti-Ft LPS IgM and these cells were significantly decreased in the spleen and peritoneal cavity of infected Il-1b-/- mice, compared to C57BL/6J mice. Collectively, our results show that IL-1β and IL-18 activate non-redundant protective responses against tularemia and identify an essential role for IL-1β in the rapid generation of pathogen-specific IgM by B1a B cells.  相似文献   

14.
Interleukin (IL)-35 is a newly identified immune negative molecule which is secreted by CD4+Foxp3+ T regulatory cells (Tregs) and contributes to their suppressive capacity. Early data have shown that IL-35 inhibits development of several autoimmune diseases. However, the role of IL-35 in atherosclerosis, a lipid-driven chronic inflammatory disease in arterial wall, remains to be investigated. Here, we found that IL-35 was involved in atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. ApoE−/− mice with established atherosclerotic lesion displayed a lower level of IL-35 compared to age-matched wild type C57BL/6 mice without plaque. However, IL-35 expression increased significantly in ApoE−/− mice with attenuated plaque. More importantly, we found that modulation of ER stress treated by chemical chaperone, 4-Phenyl butyric acid (PBA) in vivo, mainly upregulated immune negative regulating molecule IL-35, as well as IL-10 and Foxp3, accompanied by increased Tregs. However, no obvious impact on pro-inflammatory molecules such as TNF-α, IFN-γ, IL-17 and IL-23 was observed, which provides new insight into the benefit of ER stress recovery from attenuated plaque. Our results suggest that IL-35 might have a potential value for atherosclerotic therapy.  相似文献   

15.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

16.
Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.  相似文献   

17.
The functional crosstalk between angiotensin II (Ang II) and tumor necrosis factor (TNF)-α has been shown to cause adverse left ventricular remodeling and hypertrophy in hypertension. Previous studies from our lab showed that mice lacking TNF-α (TNF-α-/-) have attenuated hypertensive response to Ang II; however, the signaling mechanisms involved are not known. In this study, we investigated the signaling pathways involved in the Ang II and TNF-α interaction. Chronic Ang II infusion (1μg/kg/min, 14 days) significantly increased cardiac collagen I, collagen III, CTGF and TGF-β mRNA and protein expression in wild-type (WT) mice, whereas these changes were decreased in TNF-α-/- mice. TNF-α-/- mice with Ang II infusion showed reduced myocardial perivascular and interstitial fibrosis compared to WT mice with Ang II infusion. In WT mice, Ang II infusion increased reactive oxygen species formation and the expression of NADPH oxidase subunits, indicating increased oxidative stress, but not in TNF-α-/- mice. In addition, treatment with etanercept (8 mg/kg, every 3 days) for two weeks blunted the Ang II-induced hypertension (133±4 vs 154±3 mmHg, p<0.05) and cardiac hypertrophy (heart weight to body weight ratio, 4.8±0.2 vs 5.6±0.3, p<0.05) in WT mice. Furthermore, Ang II-induced activation of NF-κB, p38 MAPK, and JNK were reduced in both TNF-α-/- mice and mice treated with etanercept. Together, these findings indicate that TNF-α contributes to Ang II-induced hypertension and adverse cardiac remodeling, and that these effects are associated with changes in the oxidative stress dependent MAPK/TGF-β/NF-κB pathway. These results may provide new insight into the mechanisms of Ang II and TNF-α interaction.  相似文献   

18.
In BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the development of T helper 2 (Th2) responses and the production of interleukin (IL)-4 and IL-13, which share a common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα). While IL-4 is the main inducer of Th2 responses, paradoxically, it has been shown that exogenously administered IL-4 can promote dendritic cell (DC) IL-12 production and enhance Th1 development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on DCs during in vivo infection, DC specific IL-4Rα deficient (CD11ccreIL-4Rα-/lox) BALB/c mice were generated by gene targeting and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional characterization showed abrogated IL-4Rα expression on dendritic cells and alveolar macrophages in CD11ccreIL-4Rα-/lox mice. Following infection with L. major, CD11ccreIL-4Rα-/lox mice became hypersusceptible to disease, presenting earlier and increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2 antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11ccreIL-4Rα-/lox mice was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the brain. DCs showed increased parasite loads in CD11ccreIL-4Rα-/lox mice and reduced iNOS production. IL-4Rα-deficient DCs produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19 and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected DCs due to reduced killing effector functions.  相似文献   

19.

Background

Although use of the mechanical ventilator is a life-saving intervention, excessive tidal volumes will activate NF-κB in the lung with subsequent induction of lung edema formation, neutrophil infiltration and proinflammatory cytokine/chemokine release. The roles of NF-κB and IL-6 in ventilator-induced lung injury (VILI) remain widely debated.

Methods

To study the molecular mechanisms of the pathogenesis of VILI, mice with a deletion of IкB kinase in the myeloid cells (IKKβ△mye), IL-6-/- to WT chimeric mice, and C57BL/6 mice (WT) were placed on a ventilator for 6 hr.WT mice were also given an IL-6-blocking antibody to examine the role of IL-6 in VILI.

Results

Our results revealed that high tidal volume ventilation induced pulmonary capillary permeability, neutrophil sequestration, macrophage drifting as well as increased protein in bronchoalveolar lavage fluid (BALF). IL-6 production and IL-1β, CXCR2, and MIP2 expression were also increased in WT lungs but not in those pretreated with IL-6-blocking antibodies. Further, ventilator-induced protein concentrations and total cells in BALF, as well as lung permeability, were all significantly decreased in IKKβ△mye mice as well as in IL6-/- to WT chimeric mice.

Conclusion

Given that IKKβ△mye mice demonstrated a significant decrease in ventilator-induced IL-6 production, we conclude that NF-κB–IL-6 signaling pathways induce inflammation, contributing to VILI, and IкB kinase in the myeloid cells mediates ventilator-induced IL-6 production, inflammation, and lung injury.  相似文献   

20.
In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号