首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乙型肝炎病毒 (HBV)感染是我国常见病及多发病。HBV难以清除的原因之一就是机体的免疫功能障碍。目前虽然基因重组HBV表面抗原 (HBsAg)疫苗预防HBV感染取得了较好的效果 ,但基因重组HBsAg疫苗主要能诱导特异性体液免疫 ,不能刺激机体的细胞免疫应答。近年来发现基因疫苗可诱导机体产生细胞及体液免疫反应 ,特别是诱导细胞免疫反应的能力优于蛋白、多肽类疫苗 ,更适应于慢性病毒感染的预防与治疗[1,2 ] 。为了探讨应用HBV基因疫苗预防HBV感染的可能性 ,本文构建了HBV全S基因和HBsAg基因疫苗 ,观察和比…  相似文献   

2.
乙型肝炎病毒全S基因疫苗诱导小鼠的特异性免疫应答   总被引:1,自引:0,他引:1  
乙型肝炎病毒(HBV)感染是我国常见病及多发病.HBV难以清除的原因之一就是机体的免疫功能障碍.目前虽然基因重组HBV表面抗原(HBsAg)疫苗预防HBV感染取得了较好的效果,但基因重组HBsAg疫苗主要能诱导特异性体液免疫,不能刺激机体的细胞免疫应答.近年来发现基因疫苗可诱导机体产生细胞及体液免疫反应,特别是诱导细胞免疫反应的能力优于蛋白、多肽类疫苗,更适应于慢性病毒感染的预防与治疗[1,2].为了探讨应用HBV基因疫苗预防HBV感染的可能性,本文构建了HBV全S基因和HBsAg基因疫苗,观察和比较了这两种疫苗经肌肉注射接种到Balb/C小鼠体内后的细胞及体液免疫功能的变化.  相似文献   

3.
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.Current strategies for preventing or decreasing the severity of influenza infection focus on increasing virus-neutralizing antibody titers through vaccination, as experience indicates that this is the best way to prevent morbidity and mortality. Influenza A virus (IAV) undergoes mutations of the genes encoding the hemagglutinin (HA) and neuraminidase (NA) proteins that the neutralizing antibodies are directed against. When the variation is low (antigenic drift), prior vaccination often confers substantial heterologous immunity against a new seasonal IAV strain. In contrast, major genetic changes (antigenic shift) can result in pandemic IAV strains, since for novel strains, the humoral immune response is a primary response, and heterologous immunity is lacking. The emergence of such pandemic strains and the fact that young children are more vulnerable to influenza diseases highlight the need to better understand which viral and immune parameters determine the outcome of infection with viruses novel to the individual.Conventional experimental methods to measure influenza virus immunity have been limited to animal models and studies of adult human peripheral blood leukocytes. The advantages of using animal models include the ability to intensively sample multiple tissues and to utilize genetic and other interventions, such as blocking or depleting antibodies, to dissect the contribution of individual arms of the immune system. However, it is easy to question the relevance of these experiments to humans because of the many important biological differences between human and murine immune systems (29). In both the animal and human systems, we are limited to measuring those parameters and variables for which assays are available, most of them being ex vivo. Parameters such as cell-to-cell spread of the virus in vivo, trafficking of immune cells to the lung, and the in vivo interactions in an intact immune system are much more difficult or impossible to measure with contemporary techniques, particularly in humans. Computational approaches have the potential to offset some of these limitations and provide additional insight into the kinetics of the IAV infection and the associated immune response.Animal models of influenza virus infection in which different arms of the immune system have been suppressed suggest that some components of the adaptive immune system are required for complete viral clearance, often termed a sterilizing immune response. For example, abrogation of the CD4 T-cell response by cytotoxic antibody therapy or through knockout of major histocompatibility complex (MHC) class II slightly delays viral clearance but has little overall effect on the ability to control the infection (21, 54, 55). Elimination of the CD8 T-cell response typically results in delayed viral clearance (12, 20, 47), although animals with intact CD4 T-cell and B-cell compartments are able to control the infection in the absence of CD8 T cells. Presumably, this occurs through antibody-mediated mechanisms (54). Most animals depleted of both CD8 T cells and B cells are not able to clear the virus, which results in death (14, 32, 53). CD4+ T cells certainly contribute to the control of IAV infection, although cytotoxic CD4 T cells are not frequently observed unless cultured in vitro (8, 22, 45). Thus, it is generally accepted that CD8 T cells and/or antibodies are sufficient for timely and complete IAV clearance. Studies that strictly separate the relative roles of CD8 T cells and virus-specific antibodies are less satisfying. Animals depleted of both CD4 and CD8 T cells generally do not control the infection, despite substantial production of anti-IAV IgM antibodies (4, 23, 33, 34). However, adoptive transfer of IAV-specific IgM or IgG antibodies is protective (40, 51), suggesting that the timing and magnitude of the antibody response, i.e., the affinity, avidity, and antibody isotype, are important protective factors.While murine gene knockout or lymphocyte depletion studies are highly informative, they also have a number of limitations. Most importantly, the near-complete ablation of one component of the adaptive immune system often causes profound and unpredictable effects on many other immune components. Although the reported experimental measurements are highly quantitative, they often focus only on a limited number of time points or measurements and do not capture the complexity of the altered, or intact, immune response. In contrast, high-frequency experimental sampling, coupled with mathematical modeling techniques and new statistical approaches, can give insights into the complex biology of IAV infection and test the assumptions inherent in the model. We have learned from other systems, particularly HIV (19, 35, 37, 38, 56), that quantitative analysis of the biology can reveal important factors that are not intuitively obvious. For example, our current estimates for the rates of HIV production and the life span of productively infected cells in vivo were obtained via mathematical modeling (35).Mathematical models have long been used to investigate viral dynamics and immune responses to viral infections, including influenza A virus (3, 5, 7, 15, 16, 31, 36, 48). We recently described a complex differential equation model to simulate and predict the adaptive immune response to IAV infection (24). This model involves 15 equations and 48 parameters, and because of its complexity, many of the parameter values that could not be directly measured were unidentifiable. Thus, it is difficult to estimate all model parameters by fitting experimental data directly to this complex model, although the model can be used to perform simulation predictions (25). This issue can, however, be addressed by reducing the model into smaller submodels with smaller but identifiable sets of parameters, which can be estimated from experimental data. In this paper, we describe such an approach which focuses on IAV infection and the immune response solely within the lung.In the present report, we have fitted a model of primary murine influenza virus infection to data. In naïve subjects, our data suggested that there is no adaptive immune response (e.g., IAV-specific CD8+ T cells or antibodies) detectable in the spleen, lymph nodes, or lung until approximately 5 days after infection; therefore, we have divided the analysis into the following two phases: the initial preadaptive (innate) phase and the later adaptive phase. We use direct experimental data from infection of mice with the H3N2 influenza virus A/X31 strain (2, 24) to obtain key kinetic parameters. The model fitting has revealed that the duration of the infection depends on a small set of immune components, and even large fluctuations in other arms of the immune system or IAV behavior have surprisingly little impact on the outcome of the infection.  相似文献   

4.
口服型HCV融合抗原DNA疫苗在小鼠诱导免疫应答   总被引:1,自引:0,他引:1  
将编码一个外源信号肽、一个通用型辅助性T淋巴细胞抗原表位和HCV核心 包膜蛋白E2融合抗原基因的真核表达质粒pST CE2t(DNA疫苗 )转化到减毒鼠伤寒沙门菌SL72 0 7.将该重组菌口服接种BALB c小鼠 3次 .小鼠的抗HCV核心和E2抗体阳转率分别达 6 0 %和 70 % .体外以重组HCV核心或E2抗原刺激小鼠脾细胞 ,均使之发生明显的增殖反应 ,且小鼠脾细胞能有效杀伤表达HCV核心抗原的同系骨髓瘤细胞SP2 0 .这为研制高效免疫、成本低廉、接种方便的HCV疫苗提供了一个新的可行途径  相似文献   

5.

Background and Aims

Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner.

Methodology

Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses.

Results

CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation.

Conclusions

Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.  相似文献   

6.
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation.Since the first human case of infection with a highly pathogenic avian influenza A virus of the H5N1 subtype in 1997 (9, 10, 37), hundreds of zoonotic transmissions have been reported, with a high case-fatality rate (10, 44). Since these viruses continue to circulate among domestic birds and human cases are regularly reported, it is feared that they will adapt to their new host or exchange gene segments with other influenza A viruses, become transmissible from human to human, and cause a new pandemic. Recently, a novel influenza A virus of the H1N1 subtype emerged. This virus, which originated from pigs, was transmitted between humans efficiently, resulting in the first influenza pandemic of the 21st century (8, 45). Although millions of people have been inoculated with the (H1N1)2009 virus, the case-fatality rate was relatively low compared to that for infections with the H5N1 viruses (11, 31). However, the unexpected pandemic caused by influenza A/H1N1(2009) viruses has further highlighted the importance of rapid availability of safe and effective pandemic influenza virus vaccines. Other key issues for the development of pandemic influenza A virus vaccines include optimal use of the existing (limited) capacity for production of viral antigen and effectiveness against viruses that are antigenically distinct. Ideally, a single administration of a low dose of antigen would be sufficient to induce protective immunity against the homologous strain and heterologous antigenic variant strains. However, since the population at large will be immunologically naïve to a newly introduced virus, high doses of antigen are required to induce protective immunity in unprimed subjects (23, 36). The use of safe and effective adjuvants in pandemic influenza virus vaccines is considered a dose-sparing strategy. Clinical trials evaluating candidate inactivated influenza A/H5N1 virus vaccines showed that the use of adjuvants can increase their immunogenicity and broaden the specificity of the induced antibody responses (2, 7, 19, 23, 27, 36, 41). These research efforts have resulted in the licensing of adjuvanted vaccines against seasonal and pandemic influenza viruses (17). The protective efficacy of immune responses induced with candidate influenza A/H5N1 virus vaccines was demonstrated in ferrets after two immunizations (1, 22, 24, 25) or after a single immunization. The latter was achieved with a low dose of antigen in combination with the adjuvant Iscomatrix (26).Recently, a novel adjuvant that consists of a sucrose fatty acid sulfate ester (SFASE) immobilized on the oil droplets of a submicrometer emulsion of squalane in water has been developed (4). It has been demonstrated that the addition of this novel adjuvant, called CoVaccine HT, to multiple antigens increased the immune response to these antigens in pigs and horses and was well tolerated in both species (4, 16, 40). Furthermore, it was shown that the use of CoVaccine HT increased the virus-specific antibody responses in mice and ferrets after vaccination with a cell culture-derived whole inactivated influenza A/H5N1 virus vaccine (5, 13). One of the mode of actions of CoVaccine HT is the activation of antigen-presenting cells such as dendritic cells, most likely through Toll-like receptor 4 (TLR4) signaling (5).In the present study, we evaluated the protective potential of CoVaccine HT-adjuvanted cell culture-derived whole inactivated influenza A/H5N1 virus (WIV) vaccine in the ferret model, which is considered the most suitable animal model for the evaluation of candidate influenza virus vaccines (6, 14, 15). To this end, ferrets were vaccinated once or twice with various antigen doses with or without the adjuvant to test whether dose sparing could be achieved. The use of CoVaccine HT increased virus-specific antibody responses and T cell responses. A single administration of 3.8 μg hemagglutinin (HA) of WIV NIBRG-14 vaccine preparation in combination with CoVaccine HT conferred protection against challenge infection with the homologous highly pathogenic A/H5N1 virus strain A/VN/1194/04 and partial protection against infection with a heterologous, antigenically distinct strain, A/IND/5/05. Therefore, it was concluded that the use of CoVaccine HT in inactivated influenza virus vaccines induced protective virus-specific humoral and cell-mediated immune responses and that it could be suitable as adjuvant in (pre)pandemic A/H5N1 virus vaccines. Further clinical testing of these candidate vaccines seems to be warranted.  相似文献   

7.
8.
构建编码HBV包膜-核心蛋白融合基因的DNA疫苗pSC、pSS1S2C和编码HBV包膜蛋白或核心蛋白基因的DNA疫苗pHBs、pHBc,分别肌肉注射免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,比较融合基因DNA疫苗与单基因DNA疫苗诱生免疫应答的强度,发现融合基因DNA疫苗诱生抗体的效率明显不及单基因DNA疫苗,但其能诱导更强、更持久的细胞免疫应答,表明HBV包膜-核心蛋白融合基因DNA疫苗对于治疗慢性乙型肝炎可能比单基因DNA疫苗更为有效.  相似文献   

9.
探索一种简便、有效的乙型肝炎病毒DNA疫苗免疫方法。将编码绿色荧光蛋白的真核表达质粒pEGFPN1转化到减毒鼠伤寒沙门菌SL7207,灌胃饲服BALB/c小鼠,流式细胞术检测出小鼠脾细胞内表达的绿色荧光蛋白;构建编码HBV包膜大蛋白的DNA疫苗pCIS1S2S,分别以SL7207为载体的口服途径或直接肌肉注射途径免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,结果表明两种免疫途径均能在小鼠体内诱生细胞和体液免疫应答,但口服途径诱导免疫应答的强度明显强于肌肉注射途径。口服携带HBV DNA疫苗的减毒伤寒沙门菌可能代表一种简便、有效的治疗乙型肝炎的新方法。   相似文献   

10.
乙型肝炎病毒(hepatitis B virus,HBV)极易形成慢性感染,主要机制在于感染者不能产生强有力的细胞免疫应答以清除病毒[1].慢性HBV感染者体内虽然存在HBV抗原特异性T淋巴细胞,但对HBV抗原的反应性较低.研究发现,增强这类T淋巴细胞的反应性,可以促进HBV的清除[2].  相似文献   

11.
In this report, we assessed the evolution of the cytotoxic T-lymphocyte (CTL) response induced by an epitope vaccine. In two macaques immunized with a mixture of lipopeptides derived from simian immunodeficiency virus (SIV) Nef and Gag proteins, CTL responses were directed against the same, single epitope of the Nef protein (amino acids 128 to 137) presenting an alanine at position 136 (Nef 128-137/136A). However, after 5 months of SIV infection, peripheral blood mononuclear cells from both macaques lost their ability to be stimulated by autologous SIV-infected cells while still retaining their capacity to generate cytotoxic responses after specific Nef 128-137/136A peptide stimulation. The sequences of the pathogenic viral isolate used for the challenge showed a mixture of several variants. Within the Nef epitopic sequence from amino acids 128 to 137, 82% of viral variants expressed the epitopic peptide Nef 128-137/136A; the remaining variants presented a threonine at position 136 (Nef 128-137/136T). In contrast, sequence analysis of cloned proviral DNA obtained from both macaques 5 months after SIV challenge showed a different pattern of quasi-species variants; 100% of clones presented a threonine at position 136 (Nef 128-137/136T), suggesting the disappearance of viral variants with an alanine at this position under antiviral pressure exerted by Nef 128-137/136A-specific CTLs. In addition, 12 months after SIV challenge, six of eight clones from one macaque presented a glutamic acid at position 131 (Nef 128-137/131E+136T), which was not found in the infecting isolate. Furthermore, CTLs generated very early after SIV challenge were able to lyse cells sensitized with the Nef 128-137/136A epitope. In contrast, lysis was significantly less effective or even did not occur when either the selected peptide Nef 128-137/136T or the escape variant peptide Nef 128-137/131E+136T was used in a target cell sensitization assay. Dose analysis of peptides used to sensitize target cells as well as a major histocompatibility complex (MHC)-peptide stability assay suggested that the selected peptide Nef 128-137/136T has an altered capacity to bind to the MHC. These data suggest that CTL pressure leads to the selection of viral variants and to the emergence of escape mutants and supports the fact that immunization should elicit broad CTL responses.  相似文献   

12.
HEV 239是福建省医学分子病毒学研究中心实验室研制的一种戊型肝炎病毒(HEV)重组颗粒性蛋白疫苗,该文旨在研究HEV239蛋白疫苗在小鼠体内诱导产生特异性免疫应答的情况.将5μg HEV 239蛋白疫苗(239-Pro)、加铝佐剂疫苗(239-Vac)或加弗氏佐剂疫苗(239-CFA)肌肉注射免疫BALB/c鼠3次,第8周检测鼠血清抗HEV抗体及其亚类,同时用ELISPOT方法检测细胞毒性T细胞(CTL)应答.结果显示:239-Vac诱导的抗体滴度与239-CFA相当,高于无佐剂的239-Pro.239-Vac诱导的抗体中,IgG1/IgG2a比值显著高于239-CFA和239-Pro,主要为Th2型应答.除239-CFA之外,239-Vac和239-Pro也可诱导出一定的HEV抗原特异性I型Tc应答.提示:重组抗原HEV 239能诱导良好的抗体应答及一定的Tc1应答.  相似文献   

13.
Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.  相似文献   

14.
The adjuvant effects of Lactobacillus acidophilus on DNA vaccination are not fully understood. It has been hypothesized that swine-derived Lactobacillus acidophilus SW1 (LASW1) could function as an immune adjuvant to enhance antigen-specific immune responses after foot-and-mouth disease (FMD) DNA vaccination in mice. To evaluate the effect of oral LASW1 on the immune response to a DNA vaccine (pRC/CMV-vp1) harboring FMD VP1 gene, anti-FMDV antibody and its isotypes, T-cell proliferation, and cytokine detection were investigated. The results showed that LASW1 was able to enhance FMDV-specific antibody levels and FMDV-neutralizing antibodies. After a booster vaccine, the anti-FMDV antibody titers and FMDV-neutralizing antibodies levels induced by pRC/CMV-vp1 were higher in mice treated with LSAW1 than in the group immunized with pRC/CMV-vp1 alone (the control). Using T-cell proliferation, the stimulation index of the LASW1 group was significantly higher in response to ConA and 146S antigen (P<0.05) than in the control group. Importantly, higher concentrations of IFN-γ and IFN-γ-producing cells were also observed in splenocytes isolated from the experimental LASW1 mice, indicating that INF-γ secretion is important to the immune response to LASW1. The results indicate that LASW1 is a promising immune adjuvant in DNA vaccination against FMD when administrated orally.  相似文献   

15.
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N'',N''-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.  相似文献   

16.
超抗原SEA增强小鼠对HBV DNA 疫苗的免疫反应   总被引:4,自引:0,他引:4  
观察超抗原SEA(D227A)的真核表达载体(pmSEA),对HBVDNA疫苗诱导Balbc小鼠(H2d)免疫应答的调节作用。肌内注射空载体pcDNA3、HBVDNA疫苗加pmSEA佐剂(pHBVS2S+pmSEA)或不加佐剂(pHBVS2S);ELISA法测定血清抗HBs;ELISPOT检测分泌IFNγ的脾淋巴细胞;4h51Cr释放法检测小鼠脾细胞CTL活性。HBVDNA佐剂组免疫小鼠抗HBsAg抗体滴度明显高于不加佐剂组,其IgG1IgG2a的比例不同于多肽免疫组,二者分别为0.282与10。HBVDNA佐剂组均能增强IgG1和IgG2a的产生,是不加佐剂组的1.36、1.73倍。佐剂组小鼠脾淋巴细胞IFNγ的分泌量是不加佐剂组2~3倍。CTL细胞杀伤活性(E:T=100)佐剂组与不加佐剂组分别为:69.77%±7.5%、42.81%±7.7%,差异显著(P<0.05)。HBVDNA疫苗具有较强的免疫原性,能够诱导机体产生特异性的抗体及CTL反应;pmSEA佐剂能够提高小鼠对DNA疫苗的免疫应答,有望成为DNA疫苗的免疫佐剂。  相似文献   

17.
Chronic stress has deleterious effects on immune function, which can lead to adverse health outcomes. However, studies investigating the impact of stress reduction interventions on immunity in clinical research have yielded divergent results, potentially stemming from differences in study design and genetic heterogeneity, among other clinical research challenges. To test the hypothesis that reducing glucocorticoid levels enhances certain immune functions, we administered influenza vaccine once (prime) or twice (boost) to mice housed in either standard control caging or environmental enrichment (EE) caging. We have shown that this approach reduces mouse corticosterone production. Compared with controls, EE mice had significantly lower levels of fecal corticosterone metabolites (FCMs) and increased splenic B and T lymphocyte numbers. Corticosterone levels were negatively associated with the numbers of CD19+ (r2 = 0.43, p = 0.0017), CD4+ (r2 = 0.28, p = 0.0154) and CD8+ cells (r2 = 0.20, p = 0.0503). Vaccinated mice showed nonsignificant differences in immunoglobulin G (IgG) titer between caging groups, although EE mice tended to exhibit larger increases in titer from prime to boost than controls; the interaction between the caging group (control versus EE) and vaccine group (prime versus boost) showed a strong statistical trend (cage-group*vaccine-group, F = 4.27, p = 0.0555), suggesting that there may be distinct effects of EE caging on primary versus secondary IgG vaccine responses. Vaccine-stimulated splenocytes from boosted EE mice had a significantly greater frequency of interleukin 5 (IL-5)-secreting cells than boosted controls (mean difference 7.7, IL-5 spot-forming units/106 splenocytes, 95% confidence interval 0.24–135.1, p = 0.0493) and showed a greater increase in the frequency of IL-5–secreting cells from prime to boost. Our results suggest that corticosterone reduction via EE caging was associated with enhanced secondary vaccine responses, but had little effect on primary responses in mice. These findings help identify differences in primary and secondary vaccine responses in relationship to stress mediators that may be relevant in clinical studies.  相似文献   

18.
19.
In an effort to develop a safe and effective vaccine for the prevention of enterotoxigenic Escherichia coli (ETEC) F41 infections, we have developed a surface antigen display system using poly-γ-glutamate synthetase A (PgsA) as an anchoring matrix. The recombinant fusion proteins comprised of PgsA and fimbrial protein of F41 were stably expressed in Lactobacillus casei 525. Surface localization of the fusion protein was verified by immunoblotting, immunofluorescence microscopy, and flow cytometry. Oral inoculation of recombinant L. casei 525 into specific-pathogen-free BALB/c mice resulted in significant mucosal immunoglobulin A (IgA) titers that remained elevated for >16 weeks. High levels of IgG responses in sera specific for F41 fimbriae were also induced, with prominent IgG1 titers as well as IgG2a and IgG2b titers. The helper T-cell (Th) response was Th2-cell dominant, as evidenced by increased mucosal and systemic interleukin-4-producing T cells and a concomitant elevation of serum IgG1 antibody responses. More than 80% of the mice were protected against challenge with a 2 × 104-fold 50% lethal dose of standard-type F41 (C83919). The induced antibodies were important for eliciting a protective immune response against F41 infection. These results indicated that the use of recombinant L. casei 525 could be a valuable strategy for future vaccine development for ETEC.Enterotoxigenic Escherichia coli (ETEC) strains colonize the small intestine, secrete enterotoxins, and cause diarrhea. Colonization is facilitated by pili (fimbriae). Pili facilitate the adherence of ETEC to intestinal mucosa (27). Pilus adhesins that are known to be important in ETEC infections of neonatal animals are K88, K99, 987P, FY, and F41 (26, 28, 29, 38). F41 is less prevalent than K88, K99, or 987P and is usually accompanied by K99 (25). There is, however, strong suggestive evidence that F41 can mediate colonization by adhesion. Variants of a K99- and F41-positive porcine ETEC strain that have lost the K99 gene (29) and still carry the gene for and produce F41 are still virulent for newborn pigs (13).The previously conventional vaccine variability in levels of protective immunity may have been due to the lack of stimulation of appropriate mucosal immunity, since these vaccines were delivered parenterally. Mucosal immunization has proven to be an effective approach against the colonization of pathogens and their further spread to the systemic circulation (15, 34). Therefore, it is necessary to develop efficient and safe antigen vectors that will be able to trigger mucosal and systemic immune responses. One promising approach relies on the use of live bacterial vehicles (22). For mucosal immunization, lactic acid bacteria (LAB) are more attractive as delivery vehicles than other live vaccine vectors (e.g., Shigella, Salmonella, and Listeria spp.) (1, 3, 20, 21) because LAB are considered safe, they exhibit adjuvant properties, and they are weakly immunogenic (7, 9, 10, 12, 23, 41). In addition, extracellularly accessible antigens expressed on the surfaces of bacteria are better recognized by the immune system than those that are intracellular (18).It is now realized that the delivery of antigen to mucosal surfaces can induce a strong local immune response in mucosa-associated lymphoid tissue. For the surface display of antigens on Lactobacillus casei, we have developed an expression vector using the poly-γ-glutamate synthetase A (PgsA) gene product as an anchoring matrix. PgsA is a transmembrane protein derived from the poly-γ-glutamic acid synthetase complex (the PgsBCA system) of Bacillus subtilis (5, 6); in this system, the N terminus of the target protein was fused to the PgsA protein, and the resulting fusion protein was expressed on the cell surface (32). In this study, the F41 fimbrial gene of ETEC was inserted into the vector pHB:pgsA and displayed on the surface of L. casei. The oral vaccination of mice with the recombinant L. casei strain elicited systemic and mucosal immune responses. These immune responses against F41 provided protective immunity in mice challenged with virulent live infectious C83919 postimmunization. Moreover, we showed that mice orally immunized with recombinant L. casei anchoring F41 induced a Th2-type response to ETEC F41. The results of this study suggest a potential use for our surface expression system against other pathogens that are transmitted to mucosal systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号