首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
It is still unclear whether expanded and activated regulatory T cells (Tregs) in chronic viral infections can influence primary immune responses against superinfections with unrelated viruses. Expanded Tregs found in the spleens of chronically Friend virus (FV)-infected mice decreased murine cytomegalovirus (mCMV)-specific CD8+ T cell responses during acute mCMV superinfection. This suppression of mCMV-specific T cell immunity was found only in organs with FV-induced Treg expansion. Surprisingly, acute mCMV infection itself did not expand or activate Tregs.  相似文献   

2.
3.
CD8+ T cell exhaustion commonly occurs in chronic infections and cancers. During T cell exhaustion there is a progressive and hierarchical loss of effector cytokine production, up-regulation of inhibitory co-stimulatory molecules, and eventual deletion of antigen specific cells by apoptosis. A key factor that regulates T cell exhaustion is persistent TCR stimulation. Loss of this interaction results in restoration of CD8+ T cell effector functions in previously exhausted CD8+ T cells. TCR stimulation is also important for the differentiation of Eomeshi anti-viral CD8+ effector T cells from T-bethi precursors, both of which are required for optimal viral control. However, the molecular mechanisms regulating the differentiation of these two cell subsets and the relative ratios required for viral clearance have not been described. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in the favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV-clone 13 infection. Manipulation of this ratio in the favor of T-bet restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.  相似文献   

4.
In many infections, especially those that are chronic such as Herpes Simplex Virus-1 (HSV-1), the outcome may be influenced by the activity of one or more types of regulatory T cells (Tregs). Some infections can cause Treg expansion, but how viruses might promote preferential Treg expansion is has been unclear. In this report, we demonstrate a possible mechanism by which HSV (Herpes Simplex virus-1) infection could act to signal and expands the Treg population. We show that CD4+ FoxP3+ Tregs up- regulate HVEM (herpes virus entry mediator), which is a binding site for major viral glycoprotein HSVgD, following HSV infection, which is a binding site for major viral glycoprotein HSVgD. Recombinant HSVgD enhanced the proliferation of CD4+ FoxP3+ Tregs cells in-vitro. Furthermore, compared to wild type (WT), HVEM deficient mice (HVEM−/−) generated a weaker Treg responses represented by significantly diminished ratios of CD4+FoxP3+/CD4+FoxP3- cells along with diminished proportions of FoxP3+ Tregscells co-expressing Treg activation markers and a reduced MFI of FoxP3 expression on CD4+ T cells. Consistent with defective Treg responses, HVEM−/− animals were more susceptible to HSV-1 induced ocular immunopathology, with more severe lesions in HVEM−/− animals. Our results indicate that HVEM regulates Treg responses, and its modulation could represent a useful approach to control HSV induced corneal immunopathology.  相似文献   

5.
CD4 T cells are critical for control of persistent infections; however, the key signals that regulate CD4 T help during chronic infection remain incompletely defined. While several studies have addressed the role of inhibitory receptors and soluble factors such as PD-1 and IL-10, significantly less work has addressed the role of T cell co-stimulatory molecules during chronic viral infection. Here we show that during a persistent infection with lymphocytic choriomeningitis virus (LCMV) clone 13, mice lacking the glucocorticoid-induced tumor necrosis factor receptor related protein (GITR) exhibit defective CD8 T cell accumulation, increased T cell exhaustion and impaired viral control. Differences in CD8 T cells and viral control between GITR+/+ and GITR-/- mice were lost when CD4 T cells were depleted. Moreover, mixed bone marrow chimeric mice, as well as transfer of LCMV epitope-specific CD4 or CD8 T cells, demonstrated that these effects of GITR are largely CD4 T cell-intrinsic. GITR is dispensable for initial CD4 T cell proliferation and differentiation, but supports the post-priming accumulation of IFNγ+IL-2+ Th1 cells, facilitating CD8 T cell expansion and early viral control. GITR-dependent phosphorylation of the p65 subunit of NF-κB as well as phosphorylation of the downstream mTORC1 target, S6 ribosomal protein, were detected at day three post-infection (p.i.), and defects in CD4 T cell accumulation in GITR-deficient T cells were apparent starting at day five p.i. Consistently, we pinpoint IL-2-dependent CD4 T cell help for CD8 T cells to between days four and eight p.i. GITR also increases the ratio of T follicular helper to T follicular regulatory cells and thereby enhances LCMV-specific IgG production. Together, these findings identify a CD4 T cell-intrinsic role for GITR in sustaining early CD8 and late humoral responses to collectively promote control of chronic LCMV clone 13 infection.  相似文献   

6.
RANTES (CCL5) is a chemokine expressed by many hematopoietic and non-hematopoietic cell types that plays an important role in homing and migration of effector and memory T cells during acute infections. The RANTES receptor, CCR5, is a major target of anti-HIV drugs based on blocking viral entry. However, defects in RANTES or RANTES receptors including CCR5 can compromise immunity to acute infections in animal models and lead to more severe disease in humans infected with west Nile virus (WNV). In contrast, the role of the RANTES pathway in regulating T cell responses and immunity during chronic infection remains unclear. In this study, we demonstrate a crucial role for RANTES in the control of systemic chronic LCMV infection. In RANTES−/− mice, virus-specific CD8 T cells had poor cytokine production. These RANTES−/− CD8 T cells also expressed higher amounts of inhibitory receptors consistent with more severe exhaustion. Moreover, the cytotoxic ability of CD8 T cells from RANTES−/− mice was reduced. Consequently, viral load was higher in the absence of RANTES. The dysfunction of T cells in the absence of RANTES was as severe as CD8 T cell responses generated in the absence of CD4 T cell help. Our results demonstrate an important role for RANTES in sustaining CD8 T cell responses during a systemic chronic viral infection.  相似文献   

7.
In chronic viral infections, persistent antigen presentation causes progressive exhaustion of virus-specific CD8+ T cells. It has become clear, however, that virus-specific naïve CD8+ T cells newly generated from the thymus can be primed with persisting antigens. In the setting of low antigen density and resolved inflammation, newly primed CD8+ T cells are preferentially recruited into the functional memory pool. Thus, continual recruitment of naïve CD8+ T cells from the thymus is important for preserving the population of functional memory CD8+ T cells in chronically infected animals. Friend virus (FV) is the pathogenic murine retrovirus that establishes chronic infection in adult mice, which is bolstered by the profound exhaustion of virus-specific CD8+ T cells induced during the early phase of infection. Here we show an additional evasion strategy in which FV disseminates efficiently into the thymus, ultimately leading to clonal deletion of thymocytes that are reactive to FV antigens. Owing to the resultant lack of virus-specific recent thymic emigrants, along with the above exhaustion of antigen-experienced peripheral CD8+ T cells, mice chronically infected with FV fail to establish a functional virus-specific CD8+ T cell pool, and are highly susceptible to challenge with tumor cells expressing FV-encoded antigen. However, FV-specific naïve CD8+ T cells generated in uninfected mice can be primed and differentiate into functional memory CD8+ T cells upon their transfer into chronically infected animals. These findings indicate that virus-induced central tolerance that develops during the chronic phase of infection accelerates the accumulation of dysfunctional memory CD8+ T cells.  相似文献   

8.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

9.
Cytotoxic CD8 T lymphocytes (CTLs) have an astonishing ability to eliminate pathogen-infected cells. However, if uncontrolled, these CTLs could cause devastating pathology to host tissues. CD8(+) effector T cells, therefore, interact with antigen-presenting cells and other immune cells, such as regulatory T cells (Tregs), to regulate further on-site expansion and differentiation of the effector cells. This ensures protection of the host with minimal bystander pathological consequences. During prolonged chronic infections CTLs, however, often lose effector function. Induction of multiple inhibitory pathways is emerging as a major regulator converting effector CTLs into exhausted CTLs during chronic viral infections such as HIV, HCV and HBV. The mechanisms involved in induction of exhaustion during chronic viral infections are the focus of this article. Blockade of inhibitory pathways could potentially restore functional capabilities to exhausted CTLs and represents a potential immune-based intervention in chronic viral infections.  相似文献   

10.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.  相似文献   

11.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

12.
13.
PD-1 expression is generally associated with exhaustion of T cells during chronic viral infections based on the finding that PD-1 expressing cells respond poorly to antigen activation and blockade of PD-1/PD-ligand interaction restores such antigen specific responses in vitro. We tested this hypothesis by examining PD-1 expression on virus-specific CD8 T cells and total T cells in vivo to determine whether PD-1 expression constitutes a reliable marker of immune exhaustion during SIV infection. The expression of PD-1 and Ki67 was monitored longitudinally on T cell subsets in peripheral blood, bone marrow, lymph node and rectal biopsy specimens from rhesus macaques prior to and post infection with pathogenic SIVmac239. During the course of infection, a progressive negative correlation was noted between PD-1 density and Ki67 expression in p11CM+ CD8+ T cells, as seen in other studies. However, for total and memory CD4 and CD8 T cells, a positive correlation was observed between PD-1 and Ki67 expression. Thus, while the levels of non-proliferating PD-1+ p11CM+ CD8 T cells were markedly elevated with progressing infection, such an increase was not seen on total T cells. In addition, total memory PD1+ T cells exhibited higher levels of CCR5 than PD-1 T cells. Interestingly, few PD-1+ CD8+ T cells expressed CCR7 compared to PD-1+ CD4 T cells and PD-1 T cells. In conclusion, overall PD1+ T cells likely represent a particular differentiation stage or trafficking ability rather than exhaustion and in the context of chronic SIV infection, the level of PD-1 expression by T cells does not by itself serve as a reliable marker for immune exhaustion.  相似文献   

14.
Regulatory T cells (Tregs) are specialized CD4+ T lymphocytes helping defend against autoimmunity and inflammation. Although age is associated with increased inflammation and autoimmunity, few reports address age effects of immune regulation or auto‐aggressive T cells. We show here that young and aged naïve CD4+ T cells are equivalently auto‐aggressive in vivo in T cell‐driven autoimmune colitis. Young and aged CD4+ Tregs equally suppressed age‐matched T cell proliferation in vitro and controlled clinical and pathologic T cell‐driven autoimmune colitis, suggesting equivalent regulatory function. However, whereas young and aged CD4+ Tregs suppressed interferon (IFN)‐γ+ T cells equivalently in this model, aged CD4+ Tregs unexpectedly failed to restrain interleukin (IL)‐17+ T cells. Nonetheless, young and aged CD4+ Tregs equally restrained IL‐17+ T cells in vivo during acute inflammation, suggesting a chronic inflammation‐related defect in aged CD4+ Tregs. In support, aged Tregs expressed reduced STAT3 activation, a defect associated with poor IL‐17‐producing T cell restraint. Aged naïve mice had markedly increased programmed death (PD)‐1+ T cells, but these exhibited no significant auto‐aggressive or regulatory functions in T cell‐driven colitis. Young CD8+ CD122? T cells induce autoimmune bone marrow failure, but we show that aged CD8+ CD122? T cells do not. These data demonstrate no apparent age‐related increase in auto‐aggressive T cell behavior, but disclose previously unrecognized functional defects in aged CD4+ Tregs during chronic inflammation. IL‐17 can be inflammatory and contributes to certain autoimmune disorders. Reduced aged Treg function during chronic inflammation and reduced IL‐17 restraint could contribute to age‐related inflammation or autoimmunity.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) signaling pathways are dynamic and sensitive regulators of T cell function and differentiation. Altered MAPK signaling has been associated with the inflammatory and autoimmune diseases lupus and arthritis and with some pathogenic viral infections. HIV-1 infection is characterized by chronic immune inflammation, aberrantly heightened CD8+ T cell activation levels, and altered T cell function. The relationship between MAPK pathway function, HIV-1-induced activation (CD38 and HLA-DR), and exhaustion (Tim-3) markers in circulating CD8+ T cells remains unknown. Phosphorylation of the MAPK effector proteins ERK and p38 was examined by “phosflow” flow cytometry in 79 recently HIV-1-infected, antiretroviral-treatment-naïve adults and 21 risk-matched HIV-1-negative controls. We identified a subset of CD8+ T cells refractory to phorbol 12-myristate 13-acetate plus ionomycin-induced ERK1/2 phosphorylation (referred to as p-ERK1/2-refractory cells) that was greatly expanded in HIV-1-infected adults. The CD8+ p-ERK1/2-refractory cells were highly activated (CD38+ HLA-DR+) but not exhausted (Tim-3 negative), tended to have low CD8 expression, and were enriched in intermediate and late transitional memory states of differentiation (CD45RA CD28 CD27+/−). Targeting MAPK pathways to restore ERK1/2 signaling may normalize immune inflammation levels and restore CD8+ T cell function during HIV-1 infection.  相似文献   

16.
ObjectivesThis study aimed to clarify the dynamic changes of exhaustion features in T cells during oral carcinogenesis.Materials and MethodsMice were randomly divided into 4NQO group and control group. The exhaustion features of CD4+ and CD8+ T cells of both groups were detected by flow cytometry. Furthermore, multiplex immunohistochemistry was used to evaluate the expression of inhibitory receptors in human normal, dysplastic, and carcinogenesis tissues. Finally, anti‐PD‐1 antibody treatment was performed at the early premalignant phase of oral carcinogenesis.ResultsThe proportion of naive T cells in 4NQO group was lower than those in control group, while the proportion of effector memory T cells was higher in 4NQO group. The expression of inhibitory receptors on CD4+ and CD8+ T cells increased gradually during carcinogenesis. In contrast, the secretion of cytokines by CD4+ and CD8+ T cells decreased gradually with the progression stage. Strikingly, those changes occurred before the onset of oral carcinogenesis. The expression of inhibitory receptors on T cells increased gradually as the human tissues progressed from normal, dysplasia to carcinoma. Interestingly, PD‐1 blockade at the early premalignant phase could reverse carcinogenesis progression by restoring T cell function.ConclusionsT‐cell dysfunction was established at the early premalignant phase of oral carcinogenesis; PD‐1 blockade at the early premalignant phase can effectively reverse T‐cell exhaustion features and then prevent carcinogenesis progression.  相似文献   

17.
An estimated 34 million people are living with HIV worldwide (UNAIDS, 2012), with the number of infected persons rising every year. Increases in HIV prevalence have resulted not only from new infections, but also from increases in the survival of HIV-infected persons produced by effective anti-retroviral therapies. Augmentation of anti-viral immune responses may be able to further increase the survival of HIV-infected persons. One strategy to augment these responses is to reinvigorate exhausted anti-HIV immune cells present in chronically infected persons. The PD-1-PD-L1 pathway has been implicated in the exhaustion of virus-specific T cells during chronic HIV infection. Inhibition of PD-1 signaling using blocking anti-PD-1 antibodies has been shown to reduce simian immunodeficiency virus (SIV) loads in monkeys. We now show that PD-1 blockade can improve control of HIV replication in vivo in an animal model. BLT (Bone marrow-Liver-Thymus) humanized mice chronically infected with HIV-1 were treated with an anti-PD-1 antibody over a 10-day period. The PD-1 blockade resulted in a very significant 45-fold reduction in HIV viral loads in humanized mice with high CD8+ T cell expression of PD-1, compared to controls at 4 weeks post-treatment. The anti-PD-1 antibody treatment also resulted in a significant increase in CD8+ T cells. PD-1 blockade did not affect T cell expression of other inhibitory receptors co-expressed with PD-1, including CD244, CD160 and LAG-3, and did not appear to affect virus-specific humoral immune responses. These data demonstrate that inhibiting PD-1 signaling can reduce HIV viral loads in vivo in the humanized BLT mouse model, suggesting that blockade of the PD-1-PD-L1 pathway may have therapeutic potential in the treatment of patients already infected with the AIDS virus.  相似文献   

18.
19.
During HIV-1 infection, immune dysregulation and aberrant lymphocyte functions are well-established characteristics. Cell surface molecules are important for immunological functions and changes in expression can affect lymphocyte effector functions, thereby contributing to pathogenesis and disease progression. In this study we have focused on CD96, a member of the IgG superfamily receptors that have generated increasing recent interest due to their adhesive and co-stimulatory functions in addition to immunoregulatory capacity. CD96 is expressed by both T and NK cells. Although the function of CD96 is not completely elucidated, it has been shown to have adhesive functions and enhance cytotoxicity. Interestingly, CD96 may also have inhibitory functions due to its immunoreceptor tyrosine-based inhibitory motif (ITIM). The clinical significance of CD96 is still comparatively limited although it has been associated with chronic Hepatitis B infection and disease progression. CD96 has not previously been studied in the context of HIV-1 infection, but due to its potential importance in immune regulation and relevance to chronic disease, we examined CD96 expression in relation to HIV-1 pathogenesis. In a cross-sectional analysis, we investigated the CD8+ T cell expression of CD96 in cohorts of untreated HIV-1 infected adults with high viral loads (non-controllers) and low viral loads (“elite” controllers). We demonstrated that elite controllers have significantly higher CD96 mean fluorescence intensity on CD8+ T cells compared to HIV-1 non-controllers and CD96 expression was positively associated with CD4+ T cell counts. Functional assessment showed that CD8+ T cells lacking CD96 expression represented a population that produced both perforin and IFN-γ following stimulation. Furthermore, CD96 expression on CD8+ T cells was decreased in presence of lipopolysaccharide in vitro. Overall, these findings indicate that down-regulation of CD96 is an important aspect of HIV-1 pathogenesis and differential expression is related to cell effector functions and HIV-1 disease course.  相似文献   

20.
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an “immune exhaustion”, with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28CD57+CD8+ T cells between the groups. However, the frequency of Tim-3+CD8+ and Tim-3+CD4+ exhausted T cells, but not PD-1+ T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1+CD8+ T cells were directly associated with T cell immune activation in children. The frequency of Tim-3+CD8+ T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号