首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A notable advantage of zebrafish as a model organism is the ease of gene knockdown using morpholino antisense oligonucleotide (MO). However, zebrafish morphants injected with MO for a target protein often show heterogeneous phenotypes, despite controlling the injection volume of the MO solution in all embryos. We developed a method for estimating the quantity of MO injected into each living morphant, based on the co-injection of a control MO labeled with the fluorophore lissamine. By applying this method for knockdown of cardiac troponin T (tnnt2a) in zebrafish, we could efficiently select the partial tnnt2a-depleted zebrafish with a decreased heart rate and impairment of cardiac contraction. To investigate cardiac impairment of the tnnt2a morphant, we performed fluorescent cardiac imaging using Bodipy-ceramide. Cardiac image analysis showed moderate reduction of tnnt2a impaired diastolic distensibility and decreased contraction and relaxation velocities. To the best of our knowledge, this is the first report to analyze the role of tnnt2a in cardiac function in tnnt2a-depleted living animals. Our combinatorial approach can be applied for analyzing the molecular function of any protein associated with human cardiac diseases.  相似文献   

3.
We have previously shown that the maternal effect dorsalization of zebrafish embryos from sbn(dtc24) heterozygous mothers is caused by a dominant negative mutation in Smad5, a transducer of ventralizing signaling by the bone morphogenetic proteins Bmp2b and Bmp7. Since sbn(dtc24) mutant Smad5 protein not only blocks wild-type Smad5, but also other family members like Smad1, it remained open to what extent Smad5 itself is required for dorsoventral patterning. Here, we report the identification of novelsmad5 alleles: three new isolates coming from a dominant enhancer screen, and four former isolates initially assigned to the cpt and pgy complementation groups. Overexpression analyses demonstrate that three of the new alleles, m169, fr5, and tc227, are true nulls (amorphs), whereas the initial dtc24 allele is both antimorphic and hypomorphic. We rescued m169 mutant embryos by smad5 mRNA injection. Although adult mutants are smaller than their siblings, the eggs laid by m169(-/-) females are larger than normal eggs. Embryos lacking maternal Smad5 function (Mm169(-/-) embryos) are even more strongly dorsalized thanbmp2b or bmp7 null mutants. They do not respond to injected bmp2b mRNA, indicating that Smad5 is absolutely essential for ventral development and Bmp2/7 signaling. Most importantly, Mm169(-/-) embryos display reducedbmp7 mRNA levels during blastula stages, when bmp2b and bmp7 mutants are still normal. This indicates that maternally supplied Smad5 is already required to mediate ventral specification prior to zygotic Bmp2/7 signaling to establish the initial dorsoventral asymmetry.  相似文献   

4.
Fragile X syndrome (FXS) is one of the most common known causes of inherited mental retardation. The gene mutated in FXS is named FMR1, and is well conserved from human to Drosophila. In order to generate a genetic tool to study FMR1 function during vertebrate development, we generated two mutant alleles of the fmr1 gene in zebrafish. Both alleles produce no detectable Fmr protein, and produce viable and fertile progeny with lack of obvious phenotypic features. This is in sharp contrast to published results based on morpholino mediated knock-down of fmr1, reporting defects in craniofacial development and neuronal branching in embryos. These phenotypes we specifically addressed in our knock-out animals, revealing no significant deviations from wild-type animals, suggesting that the published morpholino based fmr1 phenotypes are potential experimental artifacts. Therefore, their relation to fmr1 biology is questionable and morpholino induced fmr1 phenotypes should be avoided in screens for potential drugs suitable for the treatment of FXS. Importantly, a true genetic zebrafish model is now available which can be used to study FXS and to derive potential drugs for FXS treatment.  相似文献   

5.
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.  相似文献   

6.
7.
In humans, rare non-synonymous variants in the planar cell polarity gene VANGL1 are associated with neural tube defects (NTDs). These variants were hypothesized to be pathogenic based mainly on genetic studies in a large cohort of NTD patients. In this study, we validate the potential pathogenic effect of these mutations in vivo by investigating their effect on convergent extension in zebrafish. Knocking down the expression of tri, the ortholog of Vangl2, using an antisense morpholino (MO), as shown previously, led to a defective convergent extension (CE) manifested by a shortened body axis and widened somites. Co-injection of the human VANGL1 with the tri-MO was able to partially rescue the tri-MO induced phenotype in zebrafish. In contrast, co-injection of two human VANGL1 variants, p.Val239Ile and p.Met328Thr, failed to rescue this phenotype. We next carried out overexpression studies where we measured the ability of the human VANGL1 alleles to induce a CE phenotype when injected at high doses in zebrafish embryos. While overexpressing the wild-type allele led to a severely defective CE, overexpression of either p.Val239Ile or p.Met328Thr variant failed to do so. Results from both tri-MO knockdown/rescue results and overexpression assays suggest that these two variants most likely represent “loss-of-function” alleles that affect protein function during embryonic development. Our study demonstrates a high degree of functional conservation of VANGL genes across evolution and provides a model system for studying potential variants identified in human NTDs.  相似文献   

8.
9.
10.
The best-known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Neurodegeneration in prion disease is often seen as a consequence of abnormal PrP function yet, amazingly little is known about the normal, physiological role of PrP. In particular, the absence of obvious phenotypes in PrP knockout mice has prevented scientists from answering this important question. Using knockdown approaches, we previously produced clear PrP loss-of-function phenotypes in zebrafish embryos. Analysis of these phenotypes revealed that PrP can modulate E-cadherin-based cell-cell adhesion, thereby controlling essential morphogenetic cell movements in the early gastrula. Our data also showed that PrP itself can elicit homophilic cell-cell adhesion and trigger intracellular signaling via Src-related kinases. Importantly, these molecular functions of PrP are conserved from fish to mammals. Here we discuss the use of the zebrafish in prion biology and how it may advance our understanding of the roles of PrP in health and disease.Key words: PrP, zebrafish, development, cell adhesion, signaling  相似文献   

11.
Recent advances with the type II clustered regularly interspaced short palindromic repeats (CRISPR) system promise an improved approach to genome editing. However, the applicability and efficiency of this system in model organisms, such as zebrafish, are little studied. Here, we report that RNA-guided Cas9 nuclease efficiently facilitates genome editing in both mammalian cells and zebrafish embryos in a simple and robust manner. Over 35% of site-specific somatic mutations were found when specific Cas/gRNA was used to target either etsrp, gata4 or gata5 in zebrafish embryos in vivo. The Cas9/gRNA efficiently induced biallelic conversion of etsrp or gata5 in the resulting somatic cells, recapitulating their respective vessel phenotypes in etsrpy11 mutant embryos or cardia bifida phenotypes in fautm236a mutant embryos. Finally, we successfully achieved site-specific insertion of mloxP sequence induced by Cas9/gRNA system in zebrafish embryos. These results demonstrate that the Cas9/gRNA system has the potential of becoming a simple, robust and efficient reverse genetic tool for zebrafish and other model organisms. Together with other genome-engineering technologies, the Cas9 system is promising for applications in biology, agriculture, environmental studies and medicine.  相似文献   

12.
Gene downregulation by antisense morpholino oligonucleotides (MOs) is achieved by either hybridization around the translation initiation codon or by targeting the splice donor site. In the present study, an antisense MO method is introduced that uses a 25-mer MO against a region at least 40-nt upstream from a poly(A) tail junction in the 3′-untranslated region (UTR) of maternal mRNA. The MO removed the poly(A) tail and blocked zebrafish cdk9 (zcdk9) mRNA translation, showing functional mimicry between miRNA and MO. A PCR-based assay revealed MO-mediated specific poly(A) tail removal of zebrafish mRNAs, including those for cyclin B1, cyclin B2 and tbp. The MO activity targeting cyclins A and B mRNAs was validated in unfertilized starfish oocytes and eggs. The MO removed the elongated poly(A) tail from maternal matured mRNA. This antisense method introduces a new application for the targeted downregulation of maternal mRNAs in animal oocytes, eggs and early embryos.  相似文献   

13.
An essential tool for investigating the role of a gene during development is the ability to perform gene knockdown, overexpression, and misexpression studies. In zebrafish (Danio rerio), microinjection of RNA, DNA, proteins, antisense oligonucleotides and other small molecules into the developing embryo provides researchers a quick and robust assay for exploring gene function in vivo. In this video-article, we will demonstrate how to prepare and microinject in vitro synthesized EGFP mRNA and a translational-blocking morpholino oligo against pkd2, a gene associated with autosomal dominant polycystic kidney disease (ADPKD), into 1-cell stage zebrafish embryos. We will then analyze the success of the mRNA and morpholino microinjections by verifying GFP expression and phenotype analysis. Broad applications of this technique include generating transgenic animals and germ-line chimeras, cell-fate mapping and gene screening. Herein we describe a protocol for overexpression of EGFP and knockdown of pkd2 by mRNA and morpholino oligonucleotide injection.  相似文献   

14.
15.
16.
The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.  相似文献   

17.
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.  相似文献   

18.
A bone morphogenetic protein (BMP) signaling pathway acts in the establishment of the dorsoventral axis of the vertebrate embryo. Here we demonstrate the genetic requirement for two different Bmp ligand subclass genes for dorsoventral pattern formation of the zebrafish embryo. From the relative efficiencies observed in Bmp ligand rescue experiments, conserved chromosomal synteny, and isolation of the zebrafish bmp7 gene, we determined that the strongly dorsalized snailhouse mutant phenotype is caused by a mutation in the bmp7 gene. We show that the original snailhouse allele is a hypomorphic mutation and we identify a snailhouse/bmp7 null mutant. We demonstrate that the snailhouse/bmp7 null mutant phenotype is identical to the presumptive null mutant phenotype of the strongest dorsalized zebrafish mutant swirl/bmp2b, revealing equivalent genetic roles for these two Bmp ligands. Double mutant snailhouse/bmp7; swirl/bmp2b embryos do not exhibit additional or stronger dorsalized phenotypes, indicating that these Bmp ligands do not function redundantly in early embryonic development. Furthermore, overexpression experiments reveal that Bmp2b and Bmp7 synergize in the ventralization of wild-type embryos through a cell-autonomous mechanism, suggesting that Bmp2b/Bmp7 heterodimers may act in vivo to specify ventral cell fates in the zebrafish embryo.  相似文献   

19.
Characterization of the pleiotropic effects of ten new putative W locus mutations, nine co-isogenic and one highly congenic with the C57BL/6J strain, reveals a wide variety of influences upon pigmentation, blood formation and gametogenesis. None of the putative alleles, each of which is closely linked to Ph, a gene 0.1 cM from W, gave evidence of complementation with W39, a new allele previously shown to be allelic to Wv. All W*/W39 genotypes resulted in black-eyed-white anemics with reduced gametogenic activity.1 Homozygotes for seven of these mutations are lethal during perinatal life; anemic embryos have been identified in litters produced by intercross matings involving each of these alleles.—Phenotypes of mice of several mutant genotypes provide exceptions to the frequent observation that a double dose of dominant W alleles (e.g., W/Wv or W/W) results in defects of corresponding severity in each of the three affected tissues. One viable homozygote has little or no defect in blood formation, and another appears to have normal fertility. The phenotypes of these homozygotes support the conclusion that the three tissue defects are not dependent on each other for their appearance and probably do not result from a single physiological disturbance during the development of the embryo.—Although homozygosity for members of this series results in a wide range of phenotypes, the absence of complementation of any allele with W39, the close proximity of each mutant to Ph, and the fact that all alleles produce detectable (though sometimes marginal) defects in the same tissues affected by W and Wv, support the hypothesis that each new mutant gene is a W allele.  相似文献   

20.
Local abnormal angiogenesis and cardiovascular system reorganization have been observed in embryos exposed to a simulated microgravity (SM) environment. In this study, changes in key molecular signals and pathways in cardiovascular development have been investigated under microgravity conditions. In particular, the caudal vein plexus (CVP) network, formed by sprouting angiogenesis has been chosen. Zebrafish embryos were exposed to SM using a ground-based microgravity bioreactor for 24 and 36 h. The SM was observed to have no effect on the zebrafish length, tail width and incubation time whereas it was observed to significantly reduce the heart rate frequency and to promote abnormal development of the CVP network in the embryos. Nitric oxide (NO) content demonstrated that the total proteins in zebrafish embryos were significantly higher in SM than in the control group grown under normal conditions. It was then preliminarily determined how NO signals were involved in SM regulated zebrafish CVP network formation. nos2b MO was injected and CVP network evolution was observed in 36 h post fertilization (hpf) under SM condition. The results showed that the CVP network formation was considerably decreased in the nos2b MO treated group. However, this inhibition of the CVP network development was not observed in control MO group, indicating that nos2b is involved in the SM-regulated vascular development process in zebrafish. Moreover, specific phosphoinositide 3-kinase (PI3K) inhibitors such as LY294002 were also tested on zebrafish embryos under SM condition. This treatment significantly inhibited the formation of zebrafish CVP network. Furthermore, overexpression of nos2b partly rescued the LY294002-caused CVP network failure. Therefore, it can be concluded that SM affects zebrafish CVP network remodeling by enhancing angiogenesis. Additionally, the PI3K-nos2b signaling pathway is involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号