首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied.Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals.Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.  相似文献   

2.
3.
Recent reports have provided evidence for cross-talk between regulatory T (Treg) cells and natural killer T (NKT) cells. However, it is unclear whether NKT cells play a role in the differentiation of Treg cells. By employing NKT cell-abundant Vα14 TCR transgenic (Tg) and NKT cell-deficient CD1d knock-out (KO) mice, we examined the effects of NKT cells on the in vitro differentiation of induced Treg (iTreg) cells with IL2 and TGFβ. We found that iTreg induction from CD1d KO mice was significantly increased compared to the control. Also, the addition of isolated NKT cells from Vα14 TCR Tg mice to naïve CD4+ T cells from CD1d KO mice during iTreg differentiation caused a remarkable reduction of iTreg cells. Through IFNγ neutralization, we showed that this reduction was mediated by IFNγ. Furthermore, the main source of IFNγ during iTreg differentiation was NK1.1CD4+Foxp3 T cells. This finding implied that early-activated NKT cells induced Th1-type cells and subsequently underwent apoptosis. Taken together, our results suggest that NKT cells inhibit the in vitro development of iTreg cells by increasing IFNγ.  相似文献   

4.
There is a vast amount of molecular information regarding the differentiation of T lymphocytes, in particular regarding in vitro experimental treatments that modify their differentiation process. This publicly available information was used to infer the regulatory network that controls the differentiation of T lymphocytes into CD4+ and CD8+ cells. Hereby we present a network that consists of 50 nodes and 97 regulatory interactions, representing the main signaling circuits established among molecules and molecular complexes regulating the differentiation of T cells. The network was converted into a continuous dynamical system in the form of a set of coupled ordinary differential equations, and its dynamical behavior was studied. With the aid of numerical methods, nine fixed point attractors were found for the dynamical system. These attractors correspond to the activation patterns observed experimentally for the following cell types: CD4CD8, CD4+CD8+, CD4+ naive, Th1, Th2, Th17, Treg, CD8+ naive, and CTL. Furthermore, the model is able to describe the differentiation process from the precursor CD4CD8 to any of the effector types due to a specific series of extracellular signals.  相似文献   

5.
6.
7.

Background

CD4+ T cells are of great importance in the pathogenesis of systemic lupus erythematosus (SLE), as an imbalance between CD4+ regulatory T cells (Tregs) and CD4+ responder T cells (Tresps) causes flares of active disease in SLE patients. In this study, we aimed to find the role of aberrant Treg/Tresp cell differentiation for maintaining Treg/Tresp cell balance and Treg functionality.

Methods

To determine differences in the differentiation of Tregs/Tresps we calculated the percentages of CD45RA+CD31+ recent thymic emigrant (RTE) Tregs/Tresps and CD45RA+CD31? mature naive (MN) Tregs/Tresps, as well as CD45RA?CD31+ and CD45RA?CD31? memory Tregs/Tresps (CD31+ and CD31? memory Tregs/Tresps) within the total Treg/Tresp pool of 78 SLE remission patients compared with 94 healthy controls of different ages. The proliferation capacity of each Treg/Tresp subset was determined by staining the cells with anti-Ki67 monoclonal antibodies. Differences in the autologous or allogeneic Treg function between SLE remission patients and healthy controls were determined using suppression assays.

Results

With age, we found an increased differentiation of RTE Tregs via CD31+ memory Tregs and of RTE Tresps via MN Tresps into CD31? memory Tregs/Tresp in healthy volunteers. This opposite differentiation of RTE Tregs and Tresps was associated with an age-dependent increase in the suppressive activity of both naive and memory Tregs. SLE patients showed similar age-dependent Treg cell differentiation. However, in these patients RTE Tresps differentiated increasingly via CD31+ memory Tresps, whereby CD31? memory Tresps arose that were much more difficult to inhibit for Tregs than those that emerged through differentiation via MN Tresps. Consequently, the increase in the suppressive activity of Tregs with age could not be maintained in SLE patients. Testing the Tregs of healthy volunteers and SLE patients with autologous and nonautologous Tresps revealed that the significantly decreased Treg function in SLE patients was not exclusively attributed to an age-dependent diminished sensitivity of the Tresps for Treg suppression. The immunosuppressive therapy reduced the accelerated age-dependent Tresp cell proliferation to normal levels, but simultaneously inhibited Treg cell proliferation below normal levels.

Conclusions

Our data reveal that the currently used immunosuppressive therapy has a favorable effect on the differentiation and proliferation of Tresps but has a rather unfavorable effect on the proliferation of Tregs. Newer substances with more specific effects on the immune system would be desirable.
  相似文献   

8.
Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.  相似文献   

9.
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.  相似文献   

10.
Immunotherapeutic strategies are increasingly being explored as a method of enhancing anti-tumour immune responses in patients with acute myeloid leukaemia (AML). Regulatory CD4+ T cells (Tregs) suppress effector T and natural killer (NK) cells and therefore pose a potential challenge to the efficacy of immunotherapy. AML cells transduced with a lentivirus expressing CD80 (B7.1) and IL2 (LV-CD80/IL2) are capable of stimulating T and NK cell cytotoxicity in vitro. This study examines the effect of CD80/IL2 modified AML cells on Treg number and function. We report a significant increase in the number of CD8+ T cells (P = 0.046) CD3CD56+ NK cells (P = 0.028) and CD3+CD4+CD25highFoxp3+ Tregs (P = 0.043) following stimulation for 7 days with allogeneic LV-CD80/IL2 AMLs. In contrast, autologous LV-CD80/IL2 AML cell cultures provide a weaker stimulation with a lower number of CD8+ T cells (P = 0.011) and no change in NK cell or Treg numbers. However, an increase in cytotoxic CD8+ T cells and NK cells are detected following both allogeneic and autologous LV-CD80/IL2 stimulation as demonstrated by an increase in IFN-γ and CD107a expression. Despite the presence of increased numbers of Tregs with suppressive activity in a subset of cultures, increased lysis of unmodified AMLs was still achieved following allogeneic (day 0, 2.2%; day 7, 20.4%) and more importantly, autologous LV-CD80/IL2 culture in which AML patients had recently received intensive chemotherapy (day 0, 0%; day 7, 16%). Vaccination with LV-CD80/IL2 therefore provides a potential strategy to enhance anti-leukaemia immune responses without a concomitant stimulation of Treg-mediated inhibition of cytotoxic immunological responses.  相似文献   

11.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

12.
13.

Background aims

The immunomodulatory property of mesenchymal stromal cell (MSC) exosomes is well documented. On the basis of our previous report that MSC exosomes increased regulatory T-cell (Treg) production in mice with allogenic skin graft but not in ungrafted mice, we hypothesize that an activated immune system is key to exosome-mediated Treg production.

Methods

To test our hypothesis, MSC exosomes were incubated with mouse spleen CD4+ T cells that were activated with either anti-CD3/CD28 mAbs or allogenic antigen-presenting cell (APC)-enriched spleen CD11c+ cells to determine whether production of mouse CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs could be induced. MSC exosomes were also administered to the lethal chimeric human-SCID mouse model of graft-versus-host disease (GVHD) in which human peripheral blood mononuclear cells were infused into irradiated NSG mice to induce GVHD.

Results

We report here that MSC exosome–induced production of CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs from CD4+ T cells activated by allogeneic APC-enriched CD11C+ cells but not those activated by anti-CD3/CD28 mAbs. This induction was exosome- and APC dose–dependent. In the mouse GVHD model in which GVHD was induced by transplanted human APC-stimulated human anti-mouse CD4+ T cell effectors, MSC exosome alleviated GVHD symptoms and increased survival. Surviving exosome-treated mice had a significantly higher level of human CD4+CD25+CD127low/– Tregs than surviving mice treated with Etanercept, a tumor necrosis factor inhibitor.

Conclusions

MSC exosome enhanced Treg production in vitro and in vivo through an APC-mediated pathway.  相似文献   

14.
IL2RA, a subunit of the high affinity receptor for interleukin-2 (IL2), plays a crucial role in immune homeostasis. Notably, IL2RA expression is induced in CD4+ T cells in response to various stimuli and is constitutive in regulatory T cells (Tregs). We selected for our study 18 CpGs located within cognate regulatory regions of the IL2RA locus and characterized their methylation in naive, regulatory, and memory CD4+ T cells. We found that 5/18 CpGs (notably CpG + 3502) show dynamic, active demethylation during the in vitro activation of naive CD4+ T cells. Demethylation of these CpGs correlates with appearance of IL2RA protein at the cell surface. We found no influence of cis located SNP alleles upon CpG methylation. Treg cells show constitutive demethylation at all studied CpGs. Methylation of 9/18 CpGs, including CpG +3502, decreases with age. Our data thus identify CpG +3502 and a few other CpGs at the IL2RA locus as coordinated epigenetic regulators of IL2RA expression in CD4+ T cells. This may contribute to unravel how the IL2RA locus can be involved in immune physiology and pathology.  相似文献   

15.

Background

Parasitic helminths need to suppress the host immune system to establish chronic infections. Paradoxically, immunosuppression induced by the worm also benefits the host by limiting excessive inflammation and tissue damage, which remains the major cause leading to serious morbidity and mortality. Regulatory T cells (Tregs) are key immune regulators of this mutualism. The successive rise in Tregs during schistosome infection plays a critical role in immunoregulation. We and others previously showed that Schistosoma japonicum (S. japonicum) egg antigens (SEA) induce Tregs both in vitro and in vivo. In addition, we identified that SjHSP60 derived from SEA significantly induces Tregs in vivo and in vitro. However, the contribution of SjHSP60 in SEA to Treg induction and the related mechanisms of the Treg induction have not yet been identified.

Methodology/Principal Findings

In this study, we showed that S. japonicum stress protein HSP60 (SjHSP60) was constitutively and extensively expressed in eggs of S. japonicum. SjHSP60 specially induced Tregs in vivo and in vitro without inducing other CD4+ T sub-populations including Th1, Th2 and Th17 cells. Furthermore, we showed that the SjHSP60-depleted SEA almost lost the ability in vitro and displayed a significant impaired ability to induce Tregs in vivo. Finally, our study illustrated that the mechanisms of SjHSP60-mediated induction of Tregs are through both conversion of CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs and expansion of preexisting CD4+CD25+Foxp3+ Tregs in a TLR4-dependent manner.

Conclusions/Significance

Collectively, our findings identify SjHSP60 as a major parasitic contributor of Treg induction in S. japonicum egg antigens, which not only contributes to the better understanding of the mechanism of immunoregulation during helminth infection, but also suggests its potential as a therapeutic target for control of immunopathology, allergic and autoimmune diseases.  相似文献   

16.
Effector/memory T cells (Tem) are required to maintain successful immunity, while regulatory T cells (Treg) are required to prevent excessive/uncontrolled inflammation and/or autoimmunity. Although both Tem and Treg cells are increased during aging, the relationship between the increased proportion of Foxp3+ Treg cells and CD44+ Tem cells with aging is not clearly understood. We found in this report that Foxp3+ Treg cells are increased in parallel with CD44+ Tem cells in SJL/J mice with aging, and that all Foxp3+ Treg cells are of CD44+ Tem phenotype, suggesting that the increased Foxp3+ Treg cells originated from the expanded pool of CD44+ Tem cells with aging. Our in vitro kinetic studies further suggested that Foxp3+ Treg cells are converted through the CD44+ stage. Furthermore, we observed that although the balance between Foxp3+ Treg and CD44+Foxp3 Tem cells remained with aging, the aged mice have higher ratios of both Tem and Treg cells vs. naïve T cells resulting in the “shrunken” naïve T cell pools. Our results suggest that an age-associated imbalance of T cell repertoire is a mechanism that contributes to spontaneous occurrence of Hodgkin’s-like lymphoma in aged SJL/J mice.  相似文献   

17.
Rapamycin (RPM), a powerful agent used clinically in transplant recipients, induces CD4+CD25+ regulatory T cells (Tregs) which play an important role in induction of immune tolerance. However, long-term use of RPM has negative side effects. In this report, we found that combination with the low dose RPM and high dose IL-2 did not affect antigen presentation of rat B cells to Tregs, and could efficiently promote Tregs proliferation and enhance their inhibitory activities in vitro. In addition, the combination of low dose RPM and high dose IL-2 enhanced mRNA expression of Foxp3, TGF-β1 and Pim-2 in Tregs but not in CD4+CD25 T effector cells (Teffs). The Tregs inhibitory activity is positively associated with mRNA expressions of TGF-β1 and Pim-2 while unrelated to the Foxp3 mRNA expression. Our present study offers one approach to expand functional Tregs in vitro, which maybe used for clinical immune tolerance induction.  相似文献   

18.
19.
Complex interactions between effector T cells and Foxp3+ regulatory T cells (Treg) contribute to clinical outcomes in cancer, and autoimmune and infectious diseases. Previous work showed that IL-12 reversed Treg-mediated suppression of CD4+Foxp3 T cell (Tconv) proliferation. We and others have also shown that Tregs express T-bet and IFN-γ at sites of Th1 inflammation and that IL-12 induces IFN-γ production by Tregs in vitro. To investigate whether loss of immunosuppression occurs when IFN-γ is expressed by Tregs we treated mouse lymphocyte cultures with IL-12. IFN-γ expression did not decrease the ability of Tregs to suppress Tconv proliferation. Rather, IL-12 treatment decreased Treg frequency and Foxp3 levels in Tregs. We further showed that IL-12 increased IL-2R expression on Tconv and CD8 T cells, diminished its expression on Tregs and decreased IL-2 production by Tconv and CD8 T cells. Together, these IL-12 mediated changes favored the outgrowth of non-Tregs. Additionally, we showed that treatment with a second cytokine, IL-27, decreased IL-2 expression without augmenting Tconv and CD8 T cell proliferation. Notably, IL-27 only slightly modified levels of IL-2R on non-Treg T cells. Together, these results show that IL-12 has multiple effects that modify the balance between Tregs and non-Tregs and support an important role for relative levels of IL-2R but not for IFN-γ expression in IL-12-mediated reversal of Treg immunosuppression.  相似文献   

20.
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号