首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.  相似文献   

2.
Waterbirds represent the major natural reservoir for low pathogenic (LP) avian influenza viruses (AIV). Among the wide diversity of subtypes that have been described, two of them (H5 and H7) may become highly pathogenic (HP) after their introduction into domestic bird populations and cause severe outbreaks, as is the case for HP H5N1 in South-Eastern Asia. Recent experimental studies demonstrated that HP H5N1 AIV infection in ducks does not necessarily have significant pathological effects. These results suggest that wild migratory ducks may asymptomatically carry HP AIV and potentially spread viruses over large geographical distances. In this study, we investigated the potential spreading distance of HP AIV by common teal (Anas crecca), mallard (A. platyrhynchos), and Eurasian pochard (Aythya ferina). Based on capture-mark-recapture method, we characterized their wintering movements from a western Mediterranean wetland (Camargue, South of France) and identified the potential distance and direction of virus dispersal. Such data may be crucial in determining higher-risk areas in the case of HP AIV infection detection in this major wintering quarter, and may serve as a valuable reference for virus outbreaks elsewhere.  相似文献   

3.
4.
While some marine animals are capable of traveling great distances, many have limited mobility as adults and spend the majority of their lifetimes in a small geographical area or may even be cemented to a single place. While it might be expected that species with limited mobility would have small geographic distributions, some nevertheless occur over very large areas. This is the case for some marine snails (gastropods). A key factor that impacts the geographic distribution of marine snails is the type of larvae they have during the phase of their life history that follows hatching from an egg. Because adult snails do not typically travel vast distances, the mobility of the larval stage determines the species?? ability to reach new territories. Some larvae are capable of long-distance travel, while others are not. An important component of the process of speciation involves geographic isolation, so the type of larvae a snail species possesses impacts the likelihood that it will become geographically isolated and give rise to a new species. Larval form also affects how long snail species will persist on geological timescales before going extinct, as well as rates of speciation. This paper briefly reviews the evolutionary consequences of different types of larval development in marine gastropods (especially cone snails, which are one of the most diverse groups of marine animals), particularly in determining the dispersal ability and geographic ranges of individual species, the amount of genetic exchange among populations within species, and the duration of species through time. The goal of this short review is to provide context and examples for classroom discussions of the connections between biogeography and macroevolution. Furthermore, a classroom activity is presented that involves students?? using information about snail life history and biogeography to develop research plans (and predicted results) that could be utilized to test (i.e., support or reject) several macroevolutionary hypotheses.  相似文献   

5.
Fossil data from 25 angiosperm floras from the Early Cretaceous ( approximately 124 million years ago) to the Pliocene ( approximately 2 million years ago) were compiled to estimate sizes of seeds and fruits and the relative proportion of two different seed-dispersal systems by animals and by wind. The results suggest that, first, seed and fruit sizes were generally small during most of the Cretaceous, in agreement with previous suggestions, but the trend of increasing sizes started before the Cretaceous-Tertiary boundary; second, there was a decrease in both seed and fruit sizes during late Eocene and Oligocene, reaching a level that has continued to the Late Tertiary; third, the fraction of animal dispersal was, in contrast to previous suggestions, rather high also during the Cretaceous but increased drastically in the Early Tertiary and declined congruently with the declining seed and fruit sizes from the late Eocene; and fourth, the fraction of wind dispersal showed a bimodal pattern, being high in the Late Cretaceous and in the Oligocene-Miocene but with a drop in between. We find that the observed trends are only weakly related to the availability of animal fruit dispersers. Instead, the trends are congruent with a climate-driven change in environmental conditions for recruitment, where larger seeds are favored by closed forest vegetation. The prevalence of semiopen, dry, and probably herbivore-disturbed vegetation during the Cretaceous, the development of closed multistratal forests in the Eocene, and the later development of a more open vegetation and grasslands starting in the Oligocene-Miocene, are reflected in the distribution of angiosperm seed and fruit sizes and in the dispersal systems.  相似文献   

6.
A field experiment was performed in which the richness of perennial grasses (S) was varied in model ecosystems exposed to a simulated heat wave (free air temperature increase and drought). The proportion of individuals that survived the heat wave decreased with S, which could be ascribed to higher water consumption in the species-rich systems. Higher transpiration at high diversity was also observed in other studies using functional groups and could have originated from increased leaf area, less intense stomatal closure, or a combination of both. The increased tiller number per plant that we observed, while leaf area per tiller remained constant, suggests that an enhanced leaf area index was most likely responsible. However, competitive interactions also seemed to play a role in the influence of S on survival. Regrowth of the surviving individuals, expressed as leaf area per living plant after a recovery period following the heat wave, increased with S, most likely due to the dominance of productive species, which was facilitated by the additional space yielded by more intense gap formation at higher S (due to higher plant mortality). Species richness affected both the size and density of the gaps. Mean size increased exponentially with S, while density increased at low S but decreased at higher S when connectance of the gaps occurred. Size distribution of the gaps was not affected. Received 18 January 2000; accepted 31 May 2001.  相似文献   

7.
Takakazu Yumoto 《Biotropica》1999,31(4):654-660
Seed dispersal by Salvin's curassows (Mitu salvini) was studied in a lowland tropical forest at La Macarena on the border of the Macarena and Tinigua National Parks, the Department of Meta, Colombia. Continuous observations were made on the feeding and ranging behavior of a well-habituated pair of birds from 0600 to 1800 h for 19 days. Ibtal observation time was 222 h. The daily distance traveled by the birds ranged from 630 to 3750 m, with a mean of 1959 m (± 776 m). The total home range was ca 34.4 ha. Although curassows were observed consuming fruits of 13 species belonging to the families Rubiaceae, Meliaceae, Moraceae, Burseraceae, Leguminosae, and Lecythidaceae, only seeds of Geophila re fens (Rubiaceae) and Picas spbenophylla (Moraceae) were found in their feces. For G. repens, the mean and maximum retention times were 1 h 52 min (± 1 h 20 min) and 6 h 08 min, and the mean and maximum direct dispersal distances were 245 m (± 164 m) and 633 m. More than half the seeds were dispersed in canopy gaps. For F. sphenophylla, the mean and maximum retention times were 3 h 1 5 mm (± .37 min) and 7 h 08 min, and the mean and maximum direct dispersal distances were 329 m (± 46 m) and 451 m. Nearly 60 percent of the estimated seed intake of G. repens and 92-94 percent of F. sphenophylla were digested or damaged. The retention times and the dispersal distances for Streptogyna americana, which has adhesive burrs, were also measured. The mean and maximum retention times were 1 h 55 min (± 1 h 56 min) and 9 h 11 min, and the mean and maximum direct dispersal distances were 128 m (± 68 m) and 280 m. This is the first study in which direct measurements were made for retention times and dispersal distances of the epizoochory and endozoochory for birds in the field.  相似文献   

8.

Background

Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness.

Methodology/Principal Findings

Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration.

Conclusions/Significance

Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N deposition scenario.  相似文献   

9.
【目的】籽粒大小是影响藜麦产量、商品性和加工特性的重要因素,考察灌浆期大小粒型藜麦籽粒表型、灌浆特性和淀粉合成酶活性的差异,为大粒型藜麦品种的选育提供理论指导。【方法】选择千粒重大于5.0 g和小于3.0 g的藜麦材料各两份,在青海省农林科学院种质资源创新试验基地进行田间试验,比较自灌浆期始7 d、14 d、21 d和28 d籽粒表型、灌浆特性和淀粉合成酶活性等在大小粒型藜麦间的差异。【结果】(1)大小粒型藜麦籽粒面积、周长、直径、粒长、粒宽表型性状随着生育时期均极显著增大,且粒型间存在显著差异,并以籽粒面积和周长差异最大,大粒型藜麦显著高于小粒型藜麦9.12%~11.54%和21.49~23.92%。(2)灌浆期间大粒型藜麦百粒干重始终显著高于同期小粒型藜麦,平均增幅在21.23%~31.04%;大小粒型藜麦灌浆速率随生育期均先上升后下降,均符合“慢-快-慢”的变化规律,但达到峰值时间和峰高明显不同,大粒型峰值出现早而高,小粒型则低而迟。(3)淀粉分支酶(SBE)、蔗糖合成酶(SS)、可溶性淀粉合成酶(SSS)和ADPG焦磷酸化酶(AGP)在大小粒型藜麦籽粒灌浆期呈现不同的变化趋势,SBE和SS活性表现为小粒型藜麦强于大粒型藜麦,而SSS和AGP活性则表现为大粒型藜麦强于小粒型藜麦。【结论】藜麦籽粒灌浆期间4种淀粉合成酶活性的差异,致使淀粉合成积累量和灌浆速率峰值的不同,进而形成籽粒表型性状的差异,而SSS和AGPase是影响藜麦籽粒大小形成的关键酶。  相似文献   

10.
Sex-specific differences in dispersal, survival, reproductive success, and natural selection differentially affect the effective population size (Ne) of genomic regions with different modes of inheritance such as sex chromosomes and mitochondrial DNA. In papionin monkeys (macaques, baboons, geladas, mandrills, drills, and mangabeys), for example, these factors are expected to reduce Ne of paternally inherited portions of the genome compared to maternally inherited portions. To explore this further, we quantified relative Ne of autosomal DNA, X and Y chromosomes, and mitochondrial DNA using molecular polymorphism and divergence information from pigtail macaque monkeys (Macaca nemestrina). Consistent with demographic expectations, we found that Ne of the Y is lower than expected from a Wright–Fisher idealized population with an equal proportion of males and females, whereas Ne of mitochondrial DNA is higher. However, Ne of 11 loci on the X chromosome was lower than expected, a finding that could be explained by pervasive hitchhiking effects on this chromosome. We evaluated the fit of these data to various models involving natural selection or sex-biased demography. Significant support was recovered for natural selection acting on the Y chromosome. A demographic model with a skewed sex ratio was more likely than one with sex-biased migration and explained the data about as well as an ideal model without sex-biased demography. We then incorporated these results into an evaluation of macaque divergence and migration on Borneo and Sulawesi islands. One X-linked locus was not monophyletic on Sulawesi, but multilocus data analyzed in a coalescent framework failed to reject a model without migration between these islands after both were colonized.THE effective size of a population (Ne) determines the relative impact of genetic drift and natural selection on mutations with mild effects on fitness (Charlesworth 2009). Differences in Ne are hypothesized to affect virtually every aspect of genome evolution, including rates of molecular evolution, abundance of introns and transposable elements, and persistence of duplicate genes, and this has important implications for the evolution of complexity via both adaptive and degenerative processes (Lynch 2007). Of relevance are not only the number of different individuals in a population, but also the number of copies of a gene within each individual. In diploid species with separate sexes, sex chromosomes and mitochondrial DNA (mtDNA) differ in copy number from autosomal DNA (aDNA): both sexes have two alleles at autosomal loci whereas in species with male heterogamy, males have one X and one Y chromosome, females have two Xs, and a female/male pair has effectively only one copy of mtDNA due to maternal inheritance. Sex-specific differences in demographic parameters such as migration, adult sex ratio, and variance in reproductive success also affect relative copy number and associated levels of neutral polymorphism at mtDNA, aDNA, the X chromosome (xDNA), and the Y chromosome (yDNA) (Hedrick 2007).The effective population size is the number of individuals in a Wright–Fisher idealized population (Fisher 1930; Wright 1931) that have the same magnitude of genetic drift as an observed population, where ideal individuals are diploid, and have discrete (nonoverlapping) generations, constant population size, and random mating. Ne can be quantified in terms of variance in allele frequency over generations (variance Ne) or variance in inbreeding over time (inbreeding Ne). If population size is constant with random mating, these approaches for quantifying Ne produce identical results (Kimura and Crow 1963; Whitlock and Barton 1997). At mutation–drift equilibrium with an equal number of males and females and a Poisson distributed number of offspring with a mean of two offspring per individual, Ne-aDNA and Ne-xDNA are expected to be four and three times as large, respectively, as Ne-yDNA and Ne-mtDNA; we refer to this as the “ideal expectation with an equal proportion of males and females.”Demography can alter relationships between Ne of different parts of the genome. For example, extreme skew in adult sex ratio can cause Ne of uniparentally inherited portions of the genome to exceed Ne of biparentally inherited portions (Figure 1A; Nunney 1993; Caballero 1994; Hoelzer 1997; Hedrick 2007). With a skewed sex ratio, the more common sex has a higher variance in reproductive success than the rare one, and this causes the overall variance in reproductive success to increase as the sex-ratio bias increases (Nunney 1993). Sex-biased dispersal such as female philopatry also alters relationships between Ne-aDNA, Ne-xDNA, Ne-yDNA, and Ne-mtDNA (Figure 1B), causing Ne of portions of the genome that disperse less to increase (Nei and Takahata 1993; Hoelzer 1997; Wang and Caballero 1999).Open in a separate windowFigure 1.—Ne of aDNA, xDNA, mtDNA, and yDNA as a function of (A) sex ratio skew and (B) the probability of female dispersal. In B, a finite island model of subdivided populations of constant size is assumed with a population size of 10,000 individuals, 10 subpopulations, and a male probability of migration equal to 0.1.At least five factors related to natural selection also can cause the relative Ne of aDNA, xDNA, yDNA, and mtDNA to depart from expectations: (1) very low or absent recombination in mtDNA and a portion of yDNA, (2) haploidy of mtDNA and yDNA, (3) hemizygosity of xDNA in males, (4) sexual selection and differences in gene content, and (5) differences in the rate and variance of mutation. “Selective sweeps” in which an advantageous mutation is fixed by natural selection, reduces Ne of linked sites (Maynard Smith and Haigh 1974) and this can affect the entire mitochondrial genome and nonrecombining portion of the Y chromosome. Nonrecombining portions of yDNA and mtDNA are also affected by stochastic loss of alleles containing the fewest deleterious mutations (“Muller''s ratchet”; Muller 1964; Felsenstein 1974), which results in a gradual decline of fitness of these chromosomes over time. Ne of nonrecombining DNA is further reduced by elimination of variation linked to substantially deleterious mutations (“background selection”; Charlesworth et al. 1993), by interference between linked polymorphisms that impedes fixation of advantageous alleles and extinction of deleterious ones (the “Hill–Robertson effect”; Hill and Robertson 1966; McVean and Charlesworth 2000), and by increased frequency of deleterious mutations linked to advantageous ones during a selective sweep (“genetic hitchhiking”; Rice 1987). Hemizygous X-linked and haploid Y-linked loci in males and mtDNA loci in both sexes are more vulnerable to recessive deleterious mutations because they are not masked by a second allele (Otto and Goldstein 1992). Hemizygosity on the X chromosome can also increase the rate of selective sweeps when advantageous mutations are recessive (Charlesworth et al. 1987). Similarly, these loci are also susceptible to recessive species incompatibilities—a factor that at least partially accounts for Haldane''s rule for hybrid sterility (Haldane 1922; Orr 1997). Sexual selection differentially influences the probability of fixation of mutations depending on mode of inheritance (Wade and Shuster 2004), especially mutations with antagonistic fitness effects between the sexes (Gibson et al. 2002). Additionally, the rate of evolution of animal mtDNA is much higher than aDNA, xDNA, and yDNA (Haag-Liautard et al. 2008) and this presumably contributes to variation in the frequency of nonneutral mutations in different parts of the genome.Differences among Ne of mtDNA, yDNA, xDNA, and aDNA are thought to be particularly pronounced in papionin monkeys (macaques, baboons, geladas, mandrills, drills, and mangabeys). These monkeys have a highly sex-biased adult demography; females form stable philopatric groups of close relatives, whereas males generally change social groups and disperse more widely (Dittus 1975). Often adult sex ratio of papionins is female biased (Dittus 1975; Melnick and Pearl 1987; O''Brien and Kinnard 1997; Okamoto and Matsumura 2001), and males have higher variance in reproductive success than females (Dittus 1975; de Ruiter et al. 1992; Keane et al. 1997; Van Noordwijk and Van Schaik 2002; Widdig et al. 2004). These sex differences predict strong population subdivision of mtDNA with little or no subdivision of aDNA, deep mtDNA coalescence times, and frequent mtDNA paraphyly among species, and discordant genealogical relationships between mtDNA and yDNA—and this has been observed in multiple studies (Melnick and Pearl 1987; Melnick 1988; Melnick and Hoelzer 1992; Melnick et al. 1993; Hoelzer et al. 1994; Evans et al. 1999, 2001, 2003; Tosi et al. 2000, 2002, 2003; Newman et al. 2004). Female philopatry and obligate male migration is a common social system in mammals (Greenwood 1980; Dobson 1982; Johnson 1986), though less so in humans (Seielstad et al. 1998), and molecular variation provides an effective tool for exploring the impact of natural selection and demography on aDNA, the sex chromosomes, and mtDNA (Nachman 1997; Bachtrog and Charlesworth 2002; Stone et al. 2002; Berlin and Ellegren 2004; Hellborg and Ellegren 2004; Wilder et al. 2004; Hammer et al. 2008).We explored the genetic effects of demography and linked selection in structuring sequence polymorphism of a papionin monkey—the macaques—at two levels. We first tested whether levels of polymorphism in aDNA, xDNA, yDNA, and mtDNA in a Bornean population of the pigtail macaque, Macaca nemestrina, match expectations under scenarios involving natural selection and also whether the data might be explained by simple demographic models with sex-specific dispersal or a biased sex ratio. We then explored demography on a larger, inter-island scale by estimating the time of divergence between macaques on Borneo and Sulawesi islands and by testing for evidence of ongoing migration between these islands.  相似文献   

11.
When colonies of swarm-founding wasps lose their nests to predation or accident, the entire adult population escapes, emigrates as an absconding swarm, and renests elsewhere. Such an event causes a reduction in the adult population due to losses during the emigration itself and to adult attrition without replacement during the subsequent preemergence growth period in the new nest. We addressed the first of these sources of mortality for 27 absconding swarms of Polybia occidentalis in Costa Rica. Adult mortality over the day that included swarm emigration averaged 0.044 ± 0.039 (SD) of the original population and was a weak positive function of distance moved, but not of swarm size. A larger data set showed that emigration distance increased with swarm size. This is the first study to measure mortality rates during emigration in a swarm-founding social insect.  相似文献   

12.
Environmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis) to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i) climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range), (ii) topography (mean elevation, range and coefficient of variation of elevation), and (iii) vegetation (land cover diversity, standard deviation and range of forest canopy height). The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds) and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and vegetation urges caution when using topographic complexity as a surrogate of habitat (vegetation) heterogeneity.  相似文献   

13.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

14.
Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice.  相似文献   

15.
Construal Level Theory (CLT) [1] defines psychological distance as any object, event, or person that cannot be experienced by the self in the here and now. The goal of the present research was to demonstrate that feelings of uncertainty are closely linked to the concept of psychological distance. Two experiments tested the assumption that spatial distance and uncertainty are bidirectionally related. In the first experiment, we show that perceived spatial distance leads to a feeling of uncertainty. The second experiment revealed that a feeling of uncertainty leads to a perception of greater distance. By demonstrating that distance is closely tied to uncertainty, the present research extends previous research on both distance and uncertainty by incorporating previously unexplained findings within CLT. Implications of these findings such as the role of uncertainty within CLT are discussed.  相似文献   

16.
<正>Modern-day human life is absolutely dependent upon the food that we derive from our crop plants.We eat grains,fruits,roots,tubers and other structures,all of which are constructed via coordinated organ growth.Whilst plant organ identity is first established in apical meristems(vegetative and floral shoot meristems and root meristems),and in other meristematic regions,the final size and shape of organs are defined by subsequent coordination of organ expansion in longitudinal and  相似文献   

17.
We investigated the assumption that populations of epibenthic macroinvertebrates readily establish in created coastal wetlands by quantifying the spatial and temporal patterns of Cerithidea californica (California horn snail) density in a newly created wetland and an adjacent natural area in Mugu Lagoon, southern California, United States, for 3.5 years. The natural and created sites differed in vascular plant cover and sediment grain size, organic content, salinity, and moisture content. Densities of C. californica in the created site changed little during the study period, and were often lower than those in the natural site. The influences of habitat suitability and dispersal limitation on C. californica colonization of the created site varied among snail age classes. Sediment moisture and organic content explained some of the variability in subadult (47%) and adult (55%) density and relative abundance, but none of the variability in juvenile abundance. Adult snail density was also strongly influenced by distance from the natural/created site transition zone. Juvenile and subadult snail densities were not related to distance from the natural site, possibly due to greater dispersal ability. Between‐site differences in C. californica densities and size structure suggested that adult snails were affected by both habitat characteristics and dispersal ability, subadults were influenced to a lesser degree by habitat characteristics, and juveniles were not related to either factor. Accordingly, the influence of habitat characteristics and dispersal ability on created site colonization may change with snail age. Successful restoration of benthic invertebrate communities requires consideration of both habitat characteristics and dispersal ability of the target species, even in created sites in close proximity to natural areas.  相似文献   

18.
用巴拿马50 hm2森林动态监测样地内直径≥1 cm的树种资料,分析了该样地树种多度(个体数)和丰富度(物种数)及其方差和变异系数在6个取样尺度(5 m×5 m,10 m×10 m,20 m×20 m,25 m×25 m,50 m×50 m,100 m×100 m)的变化规律.结果显示:(1)由于多度的可加性,不同取样尺度在样地内树种多度的变化表现出一致性;随取样尺度的增加,多度方差呈线性增加,而变异系数呈线性减小.(2)丰富度随取样尺度的变化较为复杂,随取样尺度的增加,丰富度方差呈非线性变化,在取样尺度为25 m×25 m时方差最大;变异系数随取样尺度的增加而呈线性减小.研究表明,大尺度的多度值可以由小尺度的多度值通过外推法估计,而丰富度却不能,在生物多样性的保护和管理中不能简单地从一个取样尺度的生物丰富度推测另一个取样尺度丰富度.  相似文献   

19.
20.
Species richness describes the number of species of a given taxon in a given time and space. The energy limitation hypothesis links the species richness of consumer taxa to net primary productivity (NPP) through two relationships: NPP limits a taxon's density, and taxon density limits species richness. We study both relationships with a survey of 15 ground ant assemblages, along a productivity gradient from deserts to rain forests. Ant density (colonies m-2) was a positive, decelerating function of net aboveground productivity (NAP). A stepwise regression suggests that the efficiency with which NAP is converted to ant colonies increases with maximum summer temperature and decreases with precipitation. Ant species richness was a positive decelerating function of density at three spatial scales. This supports the energy limitation hypothesis' assumption that average population densities are higher in environments that are more productive. These two nonlinear functions (NAP-density and density-species richness) combine to create, at a variety of scales, positive, decelerating, productivity-diversity curves for a common, ecologically dominant taxon across the terrestrial productivity gradient. However, variance in the density and diversity explained by NAP decreases with scale, suggesting that energy limitation of diversity predominates at small spatial scales (<1 ha).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号