首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.  相似文献   

2.
Ceramides (Cer) are implicated in obesity‐associated skeletal muscle and perhaps adipocyte insulin resistance. We examined whether the sphingolipid content of human subcutaneous adipose tissue and plasma varies by obesity and sex as well as the relationship between ceramide content and metabolic indices. Abdominal subcutaneous adipose biopsies were performed on 12 lean adults (males = 6), 12 obese adults (males = 6) for measurement of sphingolipid content and activity of the main ceramide metabolism enzymes. Blood was sampled for glucose, insulin (to calculate homeostasis model assessment‐estimated insulin resistance (HOMAIR)) adiponectin, and interleukin‐6 (IL‐6) concentrations. Compared to lean controls, total ceramide content (pg/adipocyte) was increased by 31% (P < 0.05) and 34% (P < 0.05) in obese females and males, respectively. In adipocytes from obese adults sphingosine, sphinganine, sphingosine‐1‐phosphate, C14‐Cer, C16‐Cer, and C24‐Cer were all increased. C18:1‐Cer was increased in obese males and C24:1‐Cer in obese females. For women only, there was a negative correlation between C16‐Cer ceramide and plasma adiponectin (r = ?0.77, P = 0.003) and a positive correlation between total ceramide content and HOMAIR (r = 0.74, P = 0.006). For men only there were significant (at least P < 0.05), positive correlations between adipocyte Cer‐containing saturated fatty acid and plasma IL‐6 concentration. We conclude that the sexual dimorphism in adipose tissue behavior in humans extends to adipose tissue sphingolipid content its association with adiponectin, IL‐6 and insulin resistance.  相似文献   

3.
Recent studies showed that deletion of ISC1, the yeast homologue of the mammalian neutral sphingomyelinase, resulted in an increased sensitivity to hydroxyurea (HU). This raised an intriguing question as to whether sphingolipids are involved in pathways initiated by HU. In this study, we show that HU treatment led to a significant increase in Isc1 activity. Analysis of sphingolipid deletion mutants and pharmacological analysis pointed to a role for ceramide in mediating HU resistance. Lipid analysis revealed that HU induced increases in phytoceramides in WT cells but not in isc1Δ cells. To probe functions of specific ceramides, we developed an approach to supplement the medium with fatty acids. Oleate (C18:1) was the only fatty acid protecting isc1Δ cells from HU toxicity in a ceramide-dependent manner. Because phytoceramide activates protein phosphatases in yeast, we evaluated the role of CDC55, the regulatory subunit of ceramide-activated protein phosphatase PP2A. Overexpression of CDC55 overcame the sensitivity to HU in isc1Δ cells. However, addition of oleate did not protect the isc1Δ,cdc55Δ double mutant from HU toxicity. These results demonstrate that HU launches a lipid pathway mediated by a specific sphingolipid, C18:1-phytoceramide, produced by Isc1, which provides protection from HU by modulating Swe1 levels through the PP2A subunit Cdc55.  相似文献   

4.
The sphingolipid backbone ceramide (Cer) is a major component of lipid lamellae in the stratum corneum of epidermis and has a pivotal role in epidermal barrier formation. Unlike Cers in other tissues, Cers in epidermis contain extremely long fatty acids (FAs). Decreases in epidermal Cer levels, as well as changes in their FA chain lengths, cause several cutaneous disorders. However, the molecular mechanisms that produce such extremely long Cers and determine their chain lengths are poorly understood. We generated mice deficient in the Elovl1 gene, which encodes the FA elongase responsible for producing C20 to C28 FAs. Elovl1 knockout mice died shortly after birth due to epidermal barrier defects. The lipid lamellae in the stratum corneum were largely diminished in these mice. In the epidermis of the Elovl1-null mice, the levels of Cers with ≥C26 FAs were decreased, while those of Cers with ≤C24 FAs were increased. In contrast, the levels of C24 sphingomyelin were reduced, accompanied by an increase in C20 sphingomyelin levels. Two ceramide synthases, CerS2 and CerS3, expressed in an epidermal layer-specific manner, regulate Elovl1 to produce acyl coenzyme As with different chain lengths. Elovl1 is a key determinant of epidermal Cer chain length and is essential for permeability barrier formation.  相似文献   

5.
Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549–11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.Sphingolipids are abundant components of cellular membranes, many of which are emerging as bioactive lipid mediators thought to play crucial roles in cellular responses (1, 2). Ceramide, a central sphingolipid, serves as the main precursor for various sphingolipids, including glycosphingolipids, gangliosides, and sphingomyelin. Regulation of formation of ceramide has been demonstrated through the action of three major pathways: the de novo pathway (3, 4), the sphingomyelinase pathway (5), and the salvage pathway (68). The latter plays an important role in constitutive sphingolipid turnover by salvaging long-chain sphingoid bases (sphingosine and dihydrosphingosine) that serve as sphingolipid backbones for ceramide and dihydroceramide as well as all complex sphingolipids (Fig. 1A).Open in a separate windowFIGURE 1.The scheme of the sphingosine salvage pathway of ceramide formation and inhibition of PMA induction of ceramide by fumonisin B1. A, the scheme of the sphingosine salvage pathway of ceramide formation. B, previously published data as to effects of fumonisin B1 on ceramide mass profiles (23) are re-plotted as a PMA induction of ceramide. In brief, MCF-7 cells were pretreated with or without 100 μm fumonisin B1 for 2 h followed by treatment with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Results are expressed as sum of increased mass of ceramide species. Dotted or open columns represents C16-ceramide or sum of other ceramide species (C14-ceramide, C18-ceramide, C18:1-ceramide, C20-ceramide, C24-ceramide, and C24:1-ceramide), respectively. The data represent mean ± S.E. of three to five values.Metabolically, ceramide is also formed from degradation of glycosphingolipids (Fig. 1A) usually in acidic compartments, the lysosomes and/or late endosomes (9). The stepwise hydrolysis of complex glycosphingolipids eventually results in the formation of glucosylceramide, which in turn is converted to ceramide by the action of acid β-glucosidase 1 (GBA1)2 (9, 10). Severe defects in GBA1 activity cause Gaucher disease, which is associated with aberrant accumulation of the lipid substrates (1014). On the other hand, sphingomyelin is cleaved by acid sphingomyelinase to also form ceramide (15, 16). Either process results in the generation of lysosomal ceramide that can then be deacylated by acid ceramidase (17), releasing sphingosine that may escape the lysosome (18). The released sphingosine may become a substrate for either sphingosine kinases or ceramide synthases, forming sphingosine 1-phosphate or ceramide, respectively (3, 1921).In a related line of investigation, our studies (20, 22, 23) have begun to implicate protein kinase Cs (PKC) as upstream regulators of the sphingoid base salvage pathway resulting in ceramide synthesis. Activation of PKCs by the phorbol ester (PMA) was shown to stimulate the salvage pathway resulting in increases in ceramide. All the induced ceramide was inhibited by pretreatment with a ceramide synthase inhibitor, fumonisin B1, but not by myriocin, thus negating acute activation of the de novo pathway and establishing a role for ceramide synthesis (20, 23). Moreover, labeling studies also implicated the salvage pathway because PMA induced turnover of steady state-labeled sphingolipids but did not affect de novo labeled ceramide in pulse-chase experiments.Moreover, PKCδ, among PKC isoforms, was identified as an upstream molecule for the activation of acid sphingomyelinase in the salvage pathway (22). Interestingly, the PKCδ isoform induced the phosphorylation of acid sphingomyelinase at serine 508, leading to its activation and consequent formation of ceramide. The activation of acid sphingomyelinase appeared to contribute to ∼50% of the salvage pathway-induced increase in ceramide (28) (also, see Fig. 4C). This raised the possibility that distinct routes of ceramide metabolism may account for the remainder of ceramide generation. In this study, we investigated glucocerebrosidase GBA1 as a candidate for one of the other routes accounting for PKC-regulated salvage pathway of ceramide formation.Open in a separate windowFIGURE 4.Effects of knockdown of lysosomal enzymes on the generation of ceramide after PMA treatment. A, MCF-7 cells were transfected with 5 nm siRNAs of each of four individual sequences (SCR, GBA1-a, GBA1-b, and GBA1-c) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of the C16-ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to nine values. B, MCF-7 cells were transfected with 5 nm siRNAs of SCR or GBA1-a (GBA1) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of individual ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to five values. C14-Cer, C14-ceramide; C16-Cer, C16-ceramide; C18-Cer; C18-ceramide; C18:1-Cer, C18:1-ceramide; C20-Cer, C20-ceramide; C20-Cer, C24-ceramide; C24:1-Cer, C24:1-ceramide. C, MCF-7 cells were transfected with 5 nm siRNAs of SCR, acid sphingomyelinase (ASM), or GBA1-a (GBA1) for 48 h following stimulation with (PMA) or without (Control) 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Levels of C16-ceramide are shown. The data represent mean ± S.E. of four to five values. Significant changes from SCR-transfected cells treated with PMA are shown in A–C (*, p < 0.02; **, p < 0.05; ***, p < 0.01).  相似文献   

6.
We show here that human embryonic stem (ES) and induced pluripotent stem cell–derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC (aPKC), both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes. Neural differentiation of human ES cells to NPs is concurrent with a threefold elevation of ceramide—in particular, saturated, long-chain C16:0 ceramide (N-palmitoyl sphingosine) and nonsaturated, very long chain C24:1 ceramide (N-nervonoyl sphingosine). Decreasing ceramide levels by inhibiting ceramide synthase or neutral sphingomyelinase 2 leads to translocation of membrane-bound aPKC to the cytosol, concurrent with its activation and the phosphorylation of its substrate Aurora kinase A (AurA). Inhibition of aPKC, AurA, or a downstream target of AurA, HDAC6, restores ciliogenesis in ceramide-depleted cells. Of importance, addition of exogenous C24:1 ceramide reestablishes membrane association of aPKC, restores primary cilia, and accelerates neural process formation. Taken together, these results suggest that ceramide prevents activation of HDAC6 by cytosolic aPKC and AurA, which promotes acetylation of tubulin in primary cilia and, potentially, neural processes. This is the first report on the critical role of ceramide generated by nSMase2 in stem cell ciliogenesis and differentiation.  相似文献   

7.
The role of “sphingolipid rheostat” by ceramide and sphingosine 1-phosphate (S1P) in the regulation of autophagy remains unclear. In human leukemia HL-60 cells, amino acid deprivation (AA(−)) caused autophagy with an increase in acid sphingomyleinase (SMase) activity and ceramide, which serves as an autophagy inducing lipid. Knockdown of acid SMase significantly suppressed the autophagy induction. S1P treatment counteracted autophagy induction by AA(−) or C2-ceramide. AA(−) treatment promoted mammalian target of rapamycin (mTOR) dephosphorylation/inactivation, inducing autophagy. S1P treatment suppressed mTOR inactivation and autophagy induction by AA(−). S1P exerts biological actions via cell surface receptors, and S1P3 among five S1P receptors was predominantly expressed in HL-60 cells. We evaluated the involvement of S1P3 in suppressing autophagy induction. S1P treatment of CHO cells had no effects on mTOR inactivation and autophagy induction by AA(−) or C2-ceramide. Whereas S1P treatment of S1P3 overexpressing CHO cells resulted in activation of the mTOR pathway, preventing cells from undergoing autophagy induced by AA(−) or C2-ceramide. These results indicate that S1P-S1P3 plays a role in counteracting ceramide signals that mediate mTOR-controlled autophagy. In addition, we evaluated the involvement of ceramide-activated protein phosphatases (CAPPs) in ceramide-dependent inactivation of the mTOR pathway. Inhibition of CAPP by okadaic acid in AA(−)- or C2-ceramide-treated cells suppressed dephosphorylation/inactivation of mTOR, autophagy induction, and autophagy-associated cell death, indicating a novel role of ceramide-CAPPs in autophagy induction. Moreover, S1P3 engagement by S1P counteracted cell death. Taken together, these results indicated that sphingolipid rheostat in ceramide-CAPPs and S1P-S1P3 signaling modulates autophagy and its associated cell death through regulation of the mTOR pathway.  相似文献   

8.
Fatty acid composition of lipids from adult Glossina morsitans was unaffected by an in vitro fed diet of cow blood which induces production of under-sized offspring compared to that of flies fed on a superior diet of pig blood. The commonest fatty acids were C16:0, C16:1 and C18:1 and only small differences in proportions were detected between virgin and pregnant females. Rate of lipid accumulation by males and females was the same and was unaffected by diet, but males achieved a maximum of 2.5 mg on day 9 while both virgin and fertilised females reached a maximum of 5,0 mg on day 14 of adult life. Lipid content of pregnant flies then fell to 3.0 mg on the day of larviposition and accumulation began again. A cow blood diet reduced the extent to which the lipids were utilised for larval growth and this was reflected in an altered secretory activity cycle in the female uterine gland. However, no effect on the growth of adult fat body was detectable in such flies. Mating and fertilisation, which influence reproductive events through activity of the endrocine system do not seem to affect the acquisition of lipid reserves by female Glossina. However, they clearly exert considerable influence over distribution of such reserves between fat body and uterine gland, which distribution is also affected by diet.  相似文献   

9.
Ida Coordt Elle 《FEBS letters》2010,584(11):2183-241
The nematode Caenorhabditis elegans (C. elegans) has during the last decade emerged as an invaluable eukaryotic model organism to understand the metabolic and neuro-endocrine regulation of lipid accumulation. The fundamental pathways of food intake, digestion, metabolism, and signalling are evolutionary conserved between mammals and worms making C. elegans a genetically and metabolically extremely tractable model to decipher new regulatory mechanisms of lipid storage and to understand how nutritional and genetic perturbations can lead to obesity and other metabolic diseases. Besides providing an overview of the most important regulatory mechanisms of lipid accumulation in C. elegans, we also critically assess the current methodologies to monitor lipid storage and content as various methods differ in their applicability, consistency, and simplicity.  相似文献   

10.
Neutral sphingomyelinase 2 (nSMase2) upregulation was recently demonstrated to serve as a molecular link between smoke inhalation and emphysematous changes in lungs. Here we report that nSMase2 deficit impairs lung development in mice. We have shown previously that fragilitas ossium (fro) mice carry a mutation in the Smpd3 gene, rendering nSMase2 catalytically inactive. Analysis of lung phenotype revealed that fro mice have abnormally enlarged alveoli and increased compliance of the respiratory system, similar to morphological and functional manifestations of emphysema. Analysis of sphingolipid content in fro lungs revealed a decreased level of C14:0 ceramide but no significant alterations in the levels of sphingosine or sphingosine-1-phosphate. Altogether, our data suggest that nSMase2 activity and ceramide level are critical for lung development and function. Based on our data, ceramide can no longer be viewed as a lipid solely detrimental to lung function.  相似文献   

11.
Sphingosine-1-phosphate (S1P) is not only a catabolic intermediate of all sphingolipids but also an evolutionary conserved bioactive lipid with critical functions in cell survival, differentiation, and migration as well as in immunity and angiogenesis. S1P-lyase (SGPL1) irreversibly cleaves S1P in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphates are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. We actually found in a previous study that in terminally differentiated neurons SGPL1 deficiency increases sphingolipid formation via recycling at the expense of de novo synthesis. We now investigated whether and how SGPL1 deficiency affects the metabolism of (glyco)sphingolipids in mouse embryonic fibroblasts (MEFs). According to our previous experiments in neurons, we found a strong accumulation of S1P in SGPL1-deficient MEFs. Surprisingly, a completely different situation arose as we analyzed sphingolipid metabolism in this non-differentiated cell type. The production of biosynthetic precursors of complex glycosphingolipids including ceramide, glucosylceramide and also ganglioside GM3 via de novo synthesis and recycling pathway was substantially increased whereas the amount of more complex gangliosides dropped significantly.  相似文献   

12.
Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC) are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs). These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs), including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer) which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.  相似文献   

13.
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease’s heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.  相似文献   

14.
Sphingolipids have key functions in plant membrane structure and signaling. Perturbations of plant sphingolipid metabolism often induce cell death and salicylic acid (SA) accumulation; SA accumulation, in turn, promotes sphingolipid metabolism and further cell death. However, the underlying molecular mechanisms remain unclear. Here, we show that the Arabidopsis thaliana lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its partner PHYTOALEXIN DEFICIENT 4 (PAD4) participate in sphingolipid metabolism and associated cell death. The accelerated cell death 5 (acd5) mutants accumulate ceramides due to a defect in ceramide kinase and show spontaneous cell death. Loss of function of EDS1, PAD4 or SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) in the acd5 background suppressed the acd5 cell death phenotype and prevented ceramide accumulation. Treatment with the SA analogue benzothiadiazole partially restored sphingolipid accumulation in the acd5 pad4 and acd5 eds1 double mutants, showing that the inhibitory effect of the pad4-1 and eds1-2 mutations on acd5-conferred sphingolipid accumulation partly depends on SA. Moreover, the pad4-1 and eds1-2 mutations substantially rescued the susceptibility of the acd5 mutant to Botrytis cinerea. Consistent with this, B. cinerea-induced ceramide accumulation requires PAD4 or EDS1. Finally, examination of plants overexpressing the ceramide synthase gene LAG1 HOMOLOGUE2 suggested that EDS1, PAD4 and SA are involved in long-chain ceramide metabolism and ceramide-associated cell death. Collectively, our observations reveal that EDS1 and PAD4 mediate ceramide (especially long-chain ceramide) metabolism and associated cell death, by SA-dependent and SA-independent pathways.  相似文献   

15.
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.  相似文献   

16.
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.  相似文献   

17.
Arabidopsis thaliana plants that lack ceramide kinase, encoded by ACCELERATED CELL DEATH5 (ACD5), display spontaneous programmed cell death late in development and accumulate substrates of ACD5. Here, we compared ceramide accumulation kinetics, defense responses, ultrastructural features, and sites of reactive oxygen species (ROS) production in wild-type and acd5 plants during development and/or Botrytis cinerea infection. Quantitative sphingolipid profiling indicated that ceramide accumulation in acd5 paralleled the appearance of spontaneous cell death, and it was accompanied by autophagy and mitochondrial ROS accumulation. Plants lacking ACD5 differed significantly from the wild type in their responses to B. cinerea, showing earlier and higher increases in ceramides, greater disease, smaller cell wall appositions (papillae), reduced callose deposition and apoplastic ROS, and increased mitochondrial ROS. Together, these data show that ceramide kinase greatly affects sphingolipid metabolism and the site of ROS accumulation during development and infection, which likely explains the developmental and infection-related cell death phenotypes. The acd5 plants also showed an early defect in restricting B. cinerea germination and growth, which occurred prior to the onset of cell death. This early defect in B. cinerea restriction in acd5 points to a role for ceramide phosphate and/or the balance of ceramides in mediating early antifungal responses that are independent of cell death.  相似文献   

18.
Obesity increases the risk for metabolic and cardiovascular disease, and adipose tissue plays a central role in this process. Ceramide, the key intermediate of sphingolipid metabolism, also contributes to obesity-related disorders. We show that a high fat diet increased ceramide levels in the adipose tissues and plasma in C57BL/6J mice via a mechanism that involves an increase in gene expression of enzymes mediating ceramide generation through the de novo pathway (e.g. serine palmitoyltransferase) and via the hydrolysis of sphingomyelin (acid sphingomyelinase and neutral sphingomyelinase). Although the induction of total ceramide in response to the high fat diet was modest, dramatic increases were observed for C16, C18, and C18:1 ceramides. Next, we investigated the relationship of ceramide to plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of plasminogen activation and another key player in obesity. PAI-1 is consistently elevated in obesity and thought to contribute to increased artherothrombotic events and more recently to obesity-mediated insulin resistance. Interestingly, the changes in ceramide were attenuated in mice lacking PAI-1. Mechanistically, mice lacking PAI-1 were protected from diet-induced increase in serine palmitoyltransferase, acid sphingomyelinase, and neutral sphingomyelinase mRNA, providing a mechanistic link for decreased ceramide in PAI-1-/- mice. The decreases in plasma free fatty acids and adipose tumor necrosis factor-alpha in PAI-1-/- mice may have additionally contributed indirectly to improvements in ceramide profile in these mice. This study has identified a novel link between sphingolipid metabolism and PAI-1 and also suggests that ceramide may be an intermediary molecule linking elevated PAI-1 to insulin resistance.  相似文献   

19.
Quantitative flux maps describing glycerolipid synthesis can be important tools for rational engineering of lipid content and composition in oilseeds. Lipid accumulation in cultured embryos of Camelina sativa is known to mimic that of seeds in terms of rate of lipid synthesis and composition. To assess the kinetic complexity of the glycerolipid flux network, cultured embryos were incubated with [14C/13C]glycerol, and initial and steady state rates of [14C/13Cglyceryl] lipid accumulation were measured. At steady state, the linear accumulations of labeled lipid classes matched those expected from mass compositions. The system showed an apparently simple kinetic precursor–product relationship between the intermediate pool, dominated by diacylglycerol (DAG) and phosphatidylcholine (PC), and the triacylglycerol (TAG) product. We also conducted isotopomer analyses on hydrogenated lipid class species. [13C3glyceryl] labeling of DAG and PC, together with estimates of endogenous [12C3glyceryl] dilution, showed that each biosynthetically active lipid pool is ∼30% of the total by moles. This validates the concept that lipid sub-pools can describe lipid biosynthetic networks. By tracking the kinetics of [13C3glyceryl] and [13C2acyl] labeling, we observed two distinct TAG synthesis components. The major TAG synthesis flux (∼75%) was associated with >95% of the DAG/PC intermediate pool, with little glycerol being metabolized to fatty acids, and with little dilution from endogenous glycerol; a smaller flux exhibited converse characteristics. This kinetic heterogeneity was further explored using postlabeling embryo dissection and differential lipid extractions. The minor flux was tentatively localized to surface cells across the whole embryo. Such heterogeneity must be recognized in order to construct accurate gene expression patterns and metabolic networks describing lipid biosynthesis in developing embryos.  相似文献   

20.
From muscle tissues of the marine snail (Turbo cornutus) aminoalkylphosphonyl cerebrosides, which had been shown to be present in visceral parts, were isolated.Their structure was determined by degradative methods and by characterization of components by gas chromatography-mass spectrometry.The aminoalkylphosphonyl cerebroside fraction consisted of a major portion of 1-O-[6′-O-(N-methylaminoethylphosphonyl)galactosyl] ceramide and a minor portion of a novel lipid, 1-O-[6′-O-(aminoethylphosphonyl)galactosyl] ceramide.The fatty acids of the fraction were mainly palmitic (53.3%) and 2-hydroxy palmitic acid (14.6%). The long chain bases were mainly dihydroxy C22 : 2 (36.6%), C18 : 1 (14.6%) and C18 : 2 (11.3%), and trihydroxy bases were also found as minor components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号