首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The goal of this study was to evaluate the potential involvement of melatonin in the activation of the nuclear factor erythroid 2-related factor 2 and antioxidant-responsive element (Nrf2–ARE) signaling pathway and the modulation of antioxidant enzyme activity in an experimental model of traumatic brain injury (TBI). In experiment 1, ICR mice were divided into four groups: sham group, TBI group, TBI + vehicle group, and TBI + melatonin group (n = 38 per group). Melatonin (10 mg/kg) was administered via an intraperitoneal (ip) injection at 0, 1, 2, 3, and 4 h post-TBI. In experiment 2, Nrf2 wild-type (Nrf2+/+ group) and Nrf2-knockout (Nrf2−/− group) mice received a TBI insult followed by melatonin administration (10 mg/kg, ip) at the corresponding time points (n = 35 per group). The administration of melatonin after TBI significantly ameliorated the effects of the brain injury, such as oxidative stress, brain edema, and cortical neuronal degeneration. Melatonin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus; increased the expression of Nrf2–ARE pathway-related downstream factors, including heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1; and prevented the decline of antioxidant enzyme activities, including superoxide dismutase and glutathione peroxidase. Furthermore, knockout of Nrf2 partly reversed the neuroprotection of melatonin after TBI. In conclusion, melatonin administration may increase the activity of antioxidant enzymes and attenuate brain injury in a TBI model, potentially via mediation of the Nrf2–ARE pathway.  相似文献   

3.
Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.  相似文献   

4.
5.
6.
目的:探讨一种新型PHD抑制剂Roxadustat对小鼠肾缺血再灌注损伤的保护作用及其可能的作用机制。方法:将雄性C57BL/6小鼠随机分为4组:假手术组(sham)、损伤组(IR)、损伤+低剂量给药组(IR+Rox10 mg/kg)以及损伤+高剂量组(IR+Rox25 mg/kg)。除假手术组外,其余各组分别于造模前1h、6h、12h给药,并于造模后6h、12h、24h、48h采血检测血肌酐(Scr)、尿素氮(BUN),1d、2d、5d取材肾脏进行病理检测。此外,利用HK-2细胞建立缺氧模型,测定给药后细胞活力和细胞凋亡情况的变化及凋亡通路蛋白和HIF-1α的表达情况。结果:与sham组和IR组相比,给药组Scr和BUN水平均明显降低,且高剂量组Scr和BUN水平显著低于低剂量组,且给药组形态学损伤更轻,细胞凋亡明显减少。细胞学实验显示,Roxadustat能提高低氧条件下HK-2细胞的活力,降低细胞凋亡,并抑制低氧导致的Bax升高,提高Bcl-2的表达,而用HIF-1α抑制剂2-MeOE2,可消除Roxadustat对凋亡的抑制作用。结论:Roxadustat能够通过上调HIF-1α表达,抑制线粒体途径凋亡通路相关蛋白表达,减少细胞凋亡,对小鼠肾脏缺血再灌注损伤产生保护作用。  相似文献   

7.
8.
目的:探讨热休克蛋白A5(HSPA5)诱导的自噬在小鼠脑缺血/再灌注损伤中的作用。方法:将36只BALB/c小鼠随机分为sham、缺血再灌注(I/R)、vehicle + I/R、3-甲基腺嘌呤(3-MA) + I/R、scramble siRNA + I/R和HSPA5 siRNA + I/R组(n=6)。Sham组只进行手术操作,不插入线栓。I/R采用大脑中动脉阻塞(MCAO)60 min后再灌注24 h。Vehicle + I/R组和3-MA + I/R将5μl 0.9% NaCl或3-MA (30 mg/ml)在MCAO前30 min侧脑室注射。scramble siRNA + I/R组和HSPA5 siRNA + I/R组将5μl scramble siRNA或HSPA5 siRNA (2μg/μl)在MCAO前24 h侧脑室注射。检测神经细胞内自噬体、缺血大脑皮层(LC3)-Ⅱ/LC3-I表达、神经元损伤程度及神经功能缺损。结果:显微镜下sham组小鼠大脑皮层神经细胞形态正常;I/R组小鼠缺血大脑皮层神经元胞质中细胞器减少,自噬体形成。与sham组比较,I/R组缺血大脑皮层LC3-Ⅱ/LC3-I蛋白表达水平显著增高(P < 0.05);与I/R组相比,3-MA + I/R组或HSPA5 siRNA + I/R组缺血大脑皮层LC3-Ⅱ/LC3-I蛋白表达明显减少(P < 0.05);3-MA + I/R组及HSPA5 siR-NA + I/R组I/R后脑缺血性损伤及神经系统症状加重(P < 0.05)。结论:HSPA5诱导自噬可能在小鼠局灶性I/R损伤中发挥保护作用。  相似文献   

9.
10.
Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser792 and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy.  相似文献   

11.
Nephrotoxicity remains a serious adverse effect of cisplatin chemotherapy, limiting its clinical usage. Numerous studies show that oxidative stress and inflammation are closely associated with cisplatin-induced renal damage. Astragaloside IV (AS-IV) has been found to possess antioxidant and anti-inflammation functions. Therefore, we investigated the potential curative effects of AS-IV against cisplatin-induced renal injury and the possible cellular mechanism for activity, both in vitro and in vivo. We found that pretreatment of HK-2 cells with AS-IV could mitigate cisplatin-induced cell damage caused by oxygen-free radicals and the inflammatory response, as evidenced by reduced formation of reactive oxygen species (ROS) and inflammatory cytokines. AS-IV improved cisplatin-induced renal dysfunction and histopathological injury in mice. Additionally, AS-IV enhanced the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). It also inhibited cisplatin-induced overproduction of kidney injury molecule-1 (KIM-1), malondialdehyde (MDA), tumour necrosis factor-α (TNF???α), and interleukin-1β (IL-1β) in kidney tissues. We found that the protective effects of AS-IV occurred via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins and inhibition of nuclear factor-κappaB (NF-κB) activation. Further, small interfering RNA (siRNA) knockdown of Nrf2 abrogated the protective effects of AS-IV against cisplatin-induced oxidative stress and blocked the inhibitory effects of AS-IV on cisplatin-induced NF-κB activation and inflammatory cytokine production. In conclusion, our data suggested that AS-IV attenuated cisplatin-mediated renal injury, and these protective effects might be due to inhibition of both oxidative damage and inflammatory response via activation of Nrf2 system and suppression of NF-κB activation.  相似文献   

12.
目的:观察益气化湿通络方对5/6肾切除肾衰竭模型大鼠残留肾脏氧化应激损伤及纤维化的改善作用。方法:采用Platt法建立5/6肾切除慢性肾衰竭大鼠模型。术后2周抽检大鼠确认造模成功后,将大鼠随机分为:模型组(Model)、益气化湿通络方组(YHT)、贝那普利组(BH)、假手术组(Sham),每组8只。每日灌胃治疗1次(YHT组免煎颗粒水溶液0.276 g/100 g;BH组盐酸贝那普利片剂水溶液0.09 mg/100 g灌胃;Sham及Model 1 ml/100 g生理盐水灌胃),连续治疗12周。12周末用代谢笼收集24 h尿液,检测尿蛋白含量。之后麻醉大鼠腹主动脉取血、摘取肾脏,检测血清血肌酐(Scr)、血尿素氮(BUN)含量;HE、Masson染色观察左肾病理改变;检测肾组织匀浆超氧化物歧化酶(SOD)的活性和丙二醛(MDA)的含量,检测肾组织中核因子NF-E2相关因子(Nrf2)、Kelch样环氧氯丙烷相关蛋白-1(Keap1)、NADPH氧化酶4(Nox4)、转化生长因子-β1(TGF-β1)、I型胶原蛋白(Collagen1)的表达以及Nrf2在肾组织细胞核内的表达。结果:与Sham组比较,Model组大鼠肾小球损伤较重,纤维化明显;Scr、BUN、MDA水平和24 h尿蛋白的排出量,Keap1、Nox4、TGF-β1、Collagen1的蛋白表达均明显升高(P<0.01),SOD活性、Nrf2表达明显降低(P<0.01);与Model组比较,经YHT或BH干预后肾小球病变程度减轻,纤维化较少,Scr、BUN、MDA水平和24 h尿蛋白的排出量,Keap1、Nox4、TGF-β1、Collagen1的蛋白表达均明显减少(P<0.01),SOD活性、Nrf2表达明显升高(P<0.01)。结论:益气化湿通络方通过影响Nrf2/Keap1信号通路、下调TGF-β1蛋白表达,从而改善肾衰竭模型大鼠残留肾脏的氧化应激损伤及纤维化程度。  相似文献   

13.
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.  相似文献   

14.
Abstract

The aim of this study was to investigate whether N-acetylcysteine (NAC), a known antioxidant, can protect kidney against ischemic injury through regulating Nrf2 signaling pathway. The expression of Nrf2, HO-1 and cleaved caspase 3 were analyzed by Western blot analysis. Apoptosis of renal tubular epithelial cells was assessed by the TUNEL method. Malondialdehyde (MDA) levels were measured by the thiobarbituric acid reaction. Blood serum creatinine and blood urea nitrogen levels were measured with an Olympus automatic multi-analyzer. We found that NAC significantly increased Nrf2 and downstream HO-1 expression. Furthermore, NAC significantly decreased cleaved caspase 3, p53 and renal epithelial tubular cell apoptosis. In addition, NAC reduced the MDA level. These findings suggest that the protective action of NAC on ischemia renal injury is associated closely with Nrf2 signaling pathway.  相似文献   

15.
16.
目的:评价右美托咪啶对小鼠肺缺血/再灌注诱发肾脏损伤的影响。方法:雄性健康SPF级C57BL/6J小鼠50只,体重20 g~24 g,8~10周龄,采用随机数字表法,将其分为5组(n=10):假手术组(sham组)、肺缺血/再灌注损伤组(I/R组)、肺缺血/再灌注+生理盐水组(NS组)、右美托咪啶组(Dex组)、右美托咪啶+阿替美唑(Atip)(DA组)。采用小鼠在体左侧肺门夹闭30 min再灌注180 min方法制备肺缺血/再灌注损伤(I/R)模型。Dex组在肺门阻断前30 min腹腔注射右美托咪啶20 μg/kg,NS组为用同Dex组等体积的生理盐水替代Dex,DA组腹腔注射右美托咪啶(20 μg/kg)+阿替美唑(250 μg/kg),其余处理同I/R组。再灌注结束后静脉取血ELISA法检测血浆中IL-1β和TNF-α浓度;取双肾组织,透射电镜下观察肾组织病理学结果。结果:与对照组相比,其余组血浆IL-1β和TNF-α浓度明显升高,肾组织病理学损伤明显加重;与I/R、NS、DA组相比,Dex组IL-1β和TNF-α浓度明显下降,差异有统计学意义(P<0.05),且肾组织超微结构损伤有所减轻。结论:右美托咪啶预先给药可减轻小鼠肺缺血/再灌注诱发肾脏损伤,其机制可能与抑制炎性反应有关。  相似文献   

17.
18.
目的:探讨姜黄素对小鼠胆管结扎所致的胆汁淤积性肝纤维化的保护作用,为肝纤维化治疗提供新的治疗方法。方法:42只健康成年雄性BALB/c小鼠随机分为假手术(n=6)处理组、假手术+姜黄素(n=6)处理组、胆管结扎(BDL)处理组(n=10)、BDL+姜黄素处理组(n=10),BDL+姜黄素+锌原卟啉(ZnPP)处理组(n=10)。BDL手术7 d后,假手术+姜黄素组、BDL+姜黄素组每日给予姜黄素(30 mg / kg)腹腔注射;BDL+姜黄素+ZnPP组每日给予姜黄素(30 mg / kg)以及nPP(50 μmol/ kg)腹腔注射;对于假手术组和BDL组,小鼠每天一次腹膜内注射等体积的盐水。整个给药过程持续7 d。小鼠BDL14 d后,取血和肝脏组织,检测谷草转氨酶(AST)、谷丙转氨酶(ALT)水平,观察肝组织病理形态变化、肝纤维化情况、检测肝组织中血红素加氧酶-1(HO-1)的蛋白表达。结果:与假手术组相比,BDL组小鼠肝脏胆囊肿大,血清谷草转氨酶(ALT)、谷丙转氨酶(AST)水平显著升高 (P<0.05),同时,天狼星红染色及促纤维化相关基因的qRT-PCR结果显示肝脏出现胶原蛋白沉积,巨噬细胞及中性粒细胞免疫组化结果显示肝脏出现炎性细胞浸润;与BDL组相比,姜黄素治疗组血清ALT、AST水平明显降低(P<0.05),胶原蛋白沉积及炎性细胞浸润情况有所改善,同时,补充姜黄素后HO-1表达升高(P<0.05);对姜黄素治疗组给予HO-1活性抑制剂ZnPP发现,姜黄素对肝损伤的保护作用被逆转。结论:姜黄素可以改善BDL所致的肝脏炎症及肝纤维化,这种保护作用可能与姜黄素调节HO-1活性有关。  相似文献   

19.
Zinc (Zn), as an essential trace element, has been approved to serve many roles in diabetic studies. Also Zn deficiency will aggravate renal damage in diabetes through suppression of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and function. The purpose of this study was to illustrate the role of Zn in renal apoptosis in diabetes and whether Nrf2 participated in the process. Type 2 diabetes mice model was induced by a single dose of streptozotocin (STZ) injection after high-fat diet (HFD) feeding for 3 months, then the mice were given diets supplemented with different concentrations of Zn (control, 30 ppm; low-concentration, 0.85 ppm). After 12-week treatment, morphology and associated protein expressions were examined. The results showed that low Zn diet significantly aggravated the level of renal apoptosis during diabetes, performed as the upregulation of caspase-3 expression. In addition, either low Zn diet or diabetes or both dramatically decreased the expression of Nrf2 and P-AKT in kidney. Moreover, the expression of β-catenin in kidney was increased markedly in diabetic groups. Mechanistic study applying human renal tubular epithelial cells (HK11) confirmed the role of Nrf2, as silencing Nrf2 expression abolished Zn supplementation protection against high sugar + high fat + low Zn-induced apoptosis and downregulation of β-catenin expression. All these results suggest that Nrf2 plays a key role in Zn protection against Type 2 diabetes induced renal apoptosis, which might be through Wnt/β-catenin signaling pathway.  相似文献   

20.
Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号