首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundDiabetic retinopathy (DR) is a common problem in the diabetic patients due to the high blood glucose level. DR affects more number of diabetic patients worldwide with irreversible vision loss.ObjectiveThe current investigation was focused to reveal the therapeutic actions of nimbolide against the streptozotocin (STZ)-provoked DR in rats through inhibition of TLR4/NF-κB pathway.MethodologyDR was provoked to the rats through administering a single dose of STZ (60 mg/kg) intraperitoneally. The DR rats were then supplemented with the 50 mg/kg of nimbolide for 60 days. The bodyweight and blood glucose level was measured using standard methods. The lipid profiles (cholesterol, TG, LDL, and HDL), inflammatory markers, and antioxidants level was detected using respective kits. The level of MCP-1, VEGF, and MMP-9 was quantified using kits. The morphometric analysis of retinal tissues were done. The mRNA expressions of target genes were studied using RT-PCR assay.ResultsNimbolide treatment effective decreased the food intake and blood glucose, and improved the bodyweight of STZ-provoked animals. The levels of pro-inflammatory mediators, cholesterol, TG, LDL, and HDL, MCP-1, VEGF, and MMP-9 was remarkably suppressed by the nimbolide treatment. Nimbolide also improved the antioxidants, retinal thickness and cell numbers. The TLR4/NF-κB pathway was appreciably inhibited by the nimbolide.ConclusionOverall, our findings demonstrated that the nimbolide attenuated the STZ-provoked DR in rats through inhibiting the TLR4/NF-κB pathway.  相似文献   

2.
3.
4.
Sun SC 《Cell research》2011,21(1):71-85
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.  相似文献   

5.
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used.  相似文献   

6.
BackgroundCentipeda minima (L.) A.Br. (C. minima) has been used in traditional Chinese herbal medicine to treat nasal allergy, diarrhea, asthma and malaria for centuries. Recent pharmacological studies have demonstrated that the ethanol extract of C. minima (ECM) and several active components possess anti-bacterial, anti-arthritis and anti-inflammatory properties. However, the effects of ECM on neuroinflammation and the underlying mechanisms have never been reported.PurposeThe study aimed to examine the potential inhibitory effects of ECM on neuroinflammation and illustrate the underlying mechanisms.MethodsHigh performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to qualify the major components of ECM; BV2 and primary microglial cells were used to examine the anti-inflammatory activity of ECM in vitro. To evaluate the anti-inflammatory effects of ECM in vivo, the mice were orally administrated with ECM (100, 200 mg•kg−1•d−1) for 2 days before cotreatment with LPS (2 mg•kg−1•d−1, ip) for an additional 3 days. The mice were sacrificed the day after the last treatment and the hippocampus was dissected for further experiments. The expression of inflammatory proteins and the activation of microglia were respectively detected by real-time PCR, ELISA, Western blotting and immunofluorescence.ResultsHPLC-MS/MS analysis confirmed and quantified seven chemicals in ECM. In BV2 and primary microglial cells, ECM inhibited the LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), thus protecting HT22 neuronal cells from inflammatory damage. Furthermore, ECM inhibited the LPS-induced activation of NF-κB signaling pathway and subsequently attenuated the induction of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4), leading to the decreased production of nitrite oxide, prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In an LPS-induced neuroinflammatory mouse model, ECM was found to exert anti-inflammatory activity by decreasing the production of proinflammatory mediators, inhibiting the phosphorylation of NF-κB, and reducing the expression of COX2, iNOS, NOX2 and NOX4 in the hippocampal tissue. Moreover, LPS-induced microglial activation was markedly attenuated in the hippocampus, while ECM at a high dose possesses a stronger anti-inflammatory activity than the positive drug dexamethansone (DEX).ConclusionThese findings demonstrate that ECM exerts antineuroinflammatory effects via attenuating the activation of NF-κB signaling pathway and inhibiting the production of proinflammatory mediators both in vitro and in vivo. C. minima might become a novel phytomedicine to treat neuroinflammatory diseases.  相似文献   

7.
Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer’s disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ1-42 formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.  相似文献   

8.
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.  相似文献   

9.
ABSTRACT

Oxidized low-density lipoprotein (ox-LDL) was known to induce endothelial cell injury to the progression of atherosclerosis (AS). Sophocarpine (SPC), a compound of sophora alkaloids isolated from the plant Sophora alopecuroides, has been shown to exhibit various pharmacological activities. This study was designed to investigate the protective effect of SPC on ox-LDL-induced endothelial cells and explored its underlying mechanism. Our results show that SPC pre-incubation ameliorated ox-LDL-mediated HAECs cytotoxicity, DNA fragmentation, and apoptosis in a dose-dependent manner. Moreover, SPC significantly downregulated the mRNA or protein expression level of pro-inflammatory mediators (TGF-β, IL-6, IL-1β, TNF-α) and pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Mechanistically, SPC pre-treatment downregulated IκBα expression and inhibited translocation of NF-κB in ox-LDL-mediated HAECs, overexpression of NF-κB p65 counteracted the cytoprotective and anti-apoptotic effect of SPC, suggesting that its action is dependent on NF-κB signaling pathway. Collectively, SPC suppresses ox-LDL-induced HAECs injury by inhibiting the NF-κB signaling pathway.  相似文献   

10.
Low-grade gliomas (LGGs) are grade III gliomas based on the WHO classification with significant genetic heterogeneity and clinical properties. Traditional histological classification of gliomas has been challenged by the improvement of molecular stratification; however, the reproducibility and diagnostic accuracy of LGGs classification still remain poor. Herein, we identified fatty acid binding protein 5 (FABP5) as one of the most enriched genes in malignant LGGs and elevated FABP5 revealed severe outcomes in LGGs. Functionally, lentiviral suppression of FABP5 reduced malignant characters including proliferation, cloning formation, immigration, invasion and TMZ resistance, contrarily, the malignancies of LGGs were enhanced by exogenous overexpression of FABP5. Mechanistically, epithelial-mesenchymal transition (EMT) was correlated to FABP5 expression in LGGs and tumour necrosis factor α (TNFα)-dependent NF-κB signalling was involved in this process. Furthermore, FABP5 induced phosphorylation of inhibitor of nuclear factor kappa-B kinase α (IKKα) thus activated nuclear factor kappa-B (NF-κB) signalling. Taken together, our study indicated that FABP5 enhances malignancies of LGGs through canonical activation of NF-κB signalling, which could be used as individualized prognostic biomarker and potential therapeutic target of LGGs.  相似文献   

11.
Objective: The objective of the present work was to investigate a possible mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation, and provide experimental basis for the study of tooth eruption disorder.

Methods: Mouse osteoblast-like (MC3T3-E1) cells were inoculated with a cell density of 70%. According to the grouping experimental design, Western blot and monodansylcadaverine (MDC) detection were conducted after dosing for 24?h. The cells were divided into the following five groups: blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group; 25?µg/mL SN50 group and 50?µg/mL SN50 group.

Results: Western blot analysis revealed that the expression of LC3 protein was present in the blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group and 50?µg/mL SN50 group, with no significant differences among these groups. However, the expression of LC3 protein was significantly lower in the 25?µg/mL SN50 group. MDC detection showed that, in the blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group and 50?µg/mL SN50 group, there was obvious green fluorescence in the cytoplasm of the osteoblasts. However, in the 25?µg/mL SN50 group, it was found that there were significantly fewer green fluorescent particles.

Conclusion: The osteoblast itself had a strong function of autophagy. The appropriate concentration of SN50 in blocking the NF-κB pathway of the osteoblast was associated with the obvious inhibition of autophagy. However, the relationship between NF-κB signaling pathway and autophagy in the process of tooth eruption requires further study.  相似文献   

12.
Mechanical stress plays a key role in regulating cartilage degradation in osteoarthritis (OA). The aim of this study was to evaluate the effects and mechanisms of mechanical stress on articular cartilage. A total of 80 male Sprague-Dawley rats were randomly divided into eight groups (n = 10 for each group): control group (CG), OA group (OAG), and CG or OAG subjected to low-, moderate-, or high-intensity treadmill exercise (CL, CM, CH, OAL, OAM, and OAH, respectively). Chondrocytes were obtained from the knee joints of rats; they were cultured on Bioflex 6-well culture plates and subjected to different durations of cyclic tensile strain (CTS) with or without exposure to interleukin-1β (IL-1β). The results of the histological score, immunohistochemistry, enzyme-linked immunosorbent assay, and western-blot analyses indicated that there were no differences between CM and CG, but OAM showed therapeutic effects compared with OAG. However, CH and OAH experienced more cartilage damage than CG and OAG, respectively. CTS had no therapeutic effects on collagen II of normal chondrocytes, which is consistent with findings after treadmill exercise. However, CTS for 4 hr could alleviate the chondrocyte damage induced by IL-1β by activating AMP-activated protein kinase (AMPK) phosphorylation and suppressing nuclear translocation of nuclear factor (NF)-κB p65. Our findings indicate that mechanical stress had no therapeutic effects on normal articular cartilage and chondrocytes; mechanical stress only caused damage with excessive stimulation. Still, moderate biomechanical stress could reduce sensitization to the inflammatory response of articular cartilage and chondrocytes through the AMPK/NF-κB signaling pathway.  相似文献   

13.
Chen F  Yang D  Wang S  Che X  Wang J  Li X  Zhang Z  Chen X  Song X 《IUBMB life》2012,64(3):274-283
Prostate cancer (PCa) has the second highest mortality rate of all tumor-related diseases for males in Western countries, and the incidence of PCa in China is increasing. Previous studies have proven that inhibitor of apoptosis proteins (IAPs) can regulate tumor cell invasion and metastasis. Livin is the most recently identified IAP. Our previous study showed that Livin might play an important role in the initiation of human PCa and that Livin-α might promote cell proliferation by regulating the G1-S cell cycle transition. However, whether Livin, as an IAP, can regulate the invasive ability of PCa cells remains unknown. In this study, we found that the expression of Livin was higher in metastatic PCa tissues than in nonmetastatic tissues and that the expression of Livin was downregulated/upregulated by small interfering RNA/vector, which could inhibit/promote PC-3/LNCaP cell invasion. This action was related to the impact of Livin on nuclear factor-κB (NF-κB) and its downstream signaling pathway, including FN and CXCR4. Together, our findings suggested that Livin might regulate tumor cell invasion in PCa directly, and that Livin might be an ideal candidate for preventing tumor cell invasion.  相似文献   

14.
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.  相似文献   

15.
16.
17.
CpG-oligonucleotides (CpG-ODNs), mimicking bacterial DNA, have recently been shown to stimulate prostate cancer invasion in vitro via Toll-like receptor 9 (TLR9). Since cyclooxygenase 2 (COX-2), frequently overexpressed in multiple tumor types including prostate cancer, is a causal factor for tumor development, invasion and metastasis, an interesting question is raised whether TLR9 regulates COX-2 expression in prostate cancer cells. To address this question, herein we examined COX-2 expression in PC-3 cells stimulated with different doses and time courses of CpG-ODNs. The regulatory role of NF-κB in TLR9-mediated COX-2 expression was also investigated. CpG-ODN was found to up-regulate the expression of COX-2 in PC-3 cells in a dose- and time-dependent manner, but have little impact on COX-1 expression. Moreover, CpG-ODN also promoted nuclear translocation and activation of NF-κB, which appeared to be required for COX-2 induction by CpG-ODN. Overall, TLR9 up-regulates COX-2 expression in prostate cancer cells, at least partially through the activation of NF-κB, which may be implicated in tumor invasion and metastasis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号