首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a polarizing current on electrical activity of the isolated frog muscle spindle was studied. A depolarizing current increased the frequency and reduced the amplitude of afferent spike activity, both spontaneous and evoked by mechanical stimulation. A hyperpolarizing current produced the opposite effect. The amplitude of the receptor potential in response to a mechanical stimulus varied as a linear function of the intensity of the polarizing currentA. A. Ukhtomskii Physiological Institute, Leningrad State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 95–101, January–February, 1973.  相似文献   

2.
The effect of pH and the calcium ions of the surrounding medium on the receptor potential and unit activity of the isolated frog muscle spindle was investigated. With a decrease in pH of the medium the amplitude and duration of the hyperpolarization phase of the receptor potential increased and the amplitude of its depolarization phase decreased. The frequencies of the spontaneous and evoked activity were reversibly reduced under these conditions. A change in pH of the surrounding medium toward the alkaline side led to a decrease in the amplitude and duration of the hyperpolarization phase of the receptor potential. The firing rate initially increased and then decreased to 30–50% of normal. An increase in the calcium concentration in an alkaline medium led to an increase, but in an acid and normal medium to a decrease, in firing rate. The observed changes in electrical activity of the muscle spindle in solutions can be explained by changes in the velocity of active (electrogenic) and passive transport of sodium and calcium ions.  相似文献   

3.
Changes in electrical activity of the isolated frog muscle spindle were studied in Ringer's solution containing ouabain. The presence of ouabain in the solution increased the spontaneous firing rate of the receptors up to a maximum and then reduced it quickly to zero. The amplitude of the action potentials was reduced on the average to 40% of normal. Ouabain causes initial disappearance of the hyperpolarization phase of the receptor potential and a subsequent decrease in amplitude of its dynamic phase to zero. The decrease in amplitude of the receptor potential and action potential and also the changes in firing rate in the solution with ouabain depend on the frequency of their spontaneous activity. The changes observed can be explained by depolarization of the membrane of the nerve endings and the first node of Ranvier, developing as a result of blocking of the sodium pump by ouabain.Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 576–582, November–December, 1973.  相似文献   

4.
The experiments were performed on 21 cats anaesthetized with alpha-chloralose. The aim of the study was to investigate sets of simultaneously recorded spindle afferents (2-4 in each set) from the triceps surae muscle (GS) with respect to the pattern of fusimotor reflex effects evoked by different types of ipsi- and contralateral reflex stimulation. The afferents' responses to sinusoidal stretching of the GS muscle were determined and the fusimotor reflex effects were assessed by comparing the afferent responses (i.e. the mean rate of firing and the depth of modulation) elicited during reflex stimulation with those evoked in absence of any reflex stimulus. Natural of electrical activations of ipsi- and contralateral muscle, skin and joint receptor afferents were used as reflex stimuli. The spindle afferents were influenced by several modalities and from wide areas, with a majority responding to both ipsi- and contralateral stimuli. A particular reflex stimulus often caused different effects on different afferents, and the various reflex stimuli seldom gave similar effects on a particular afferent. Multivariate analysis revealed that the variation in response profiles among simultaneously recorded afferents were as great as between afferents recorded on different occasions. This suggests that the individualized response prifiles, observed in earlier investigations, represent a very diversified reflex control of the spindle primary afferents, and are not a reflection of changes in the setting of the spinal interneuronal network, occurring during the time interval between the recordings of different units. Also, there was no relation between the conduction velocity of the afferents and the reflex profiles of the afferents, but non-linear relations were found between effects elicited by different types of stimuli. Indications were also found that it may be possible to separate the population of GS muscle spindles into subgroups, according to the fusimotor effects exhibited by activation of various categories of ipsi- and contralateral receptor afferents. It is concluded that one possible way of making the very complex reflex system controlling the muscle spindles intelligible may be a combination of multiple simultaneous recordings of spindle afferents and multivariate analysis.  相似文献   

5.
The purpose of this study was to investigate secondary muscle spindle afferents from the triceps-plantaris (GS) and posterior biceps and semitendinosus (PBSt) muscles with respect to their fusimotor reflex control from different types of peripheral nerves and receptors. The activity of single secondary muscle spindle afferents was recorded from dissected and cut dorsal root filaments in alpha-chloralose anaesthetized cats. Both single spindle afferents and sets of simultaneously recorded units (2-3) were investigated. The modulation and mean rate of firing of the afferent response to sinusoidal stretching of the GS and PBSts muscle were determined. Control measurements were performed in the absence of any reflex stimulation, while test measurements were made during reflex stimulation. The reflex stimuli consisted of manually performed movements of the contralateral hind limb, muscle stretches, ligament tractions and electrical stimulations of cutaneous afferents. Altogether 21 secondary spindle afferents were investigated and 20 different reflex stimuli were employed. The general responsiveness (i.e. number of significant reflex effects/number of control-test series) was 52.4%, but a considerable variation between different stimuli was found, with the highest (89.9%) for contralateral whole limb extension and the lowest (25.0%) for stretch of the contralateral GS muscle. The size of the response to a given stimulus varied considerably between different afferents, and, in the same afferent, different reflex stimuli produced effects of varying size. Most responses were characterized by an increase in mean rate of discharge combined with a decrease in modulation, indicative of static fusimotor drive (Cussons et al., 1977). Since the secondary muscle spindle afferents are part of a positive feedback loop, projecting back to both static and dynamic fusimotor neurones (Appelberg Et al., 1892 a, 1983 b; Appelberg et al., 1986), it is suggested that the activity in the loop may work like an amplified which, during some circumstances, enhance the effect of other reflex inputs to the system (Johansson et al., 1991 b).  相似文献   

6.
Firing pattern of skeletomotor neurones innervating triceps surae muscles in response to pseudorandom muscle stretching and white noise modulated transmembrane current stimulation was investigated in decerebrate cats. Pseudo-random muscle stretching (upper cut-off frequency 60 Hz, amplitude (standard deviation) ranging from 18.5 m to 40 m) was applied to triceps surae muscles. Membrane potential changes and action potentials of skeletomotor neurones were recorded intracellularly. White noise modulated current was applied through the same (recording) microelectrode. Sequences of ten identical 5 s periods of either muscle stretching or transmembrane current stimulation were applied. Skeletomotor neurones belonging to slow motor units (rheobase less than 8.5 nA) generated action potentials in response to both pseudo-random muscle stretching and transmembrane current stimulation, while firing threshold of those belonging to fast motor units could not be reached by the muscle stretches applied. Peri-spike averaging of muscle length and injected current records showed that the action potentials appeared at the peak of either depolarizing current wave or muscle stretching both preceded by a change in opposite direction (the spikes coinciding with the peak in muscle length PSA being actually elicited by muscle spindle action potentials triggered at the moment of the peak stretching velocity). Time coupling of action potentials occurred during both muscle stretching and transmembrane stimulation, being more tight in the latter case as well as when larger amplitudes of the stimuli were applied. It is supposed that discharges from muscle spindle primary endings phase-locked to small pseudo-random muscle length changes may, due to the time coupling of skeletomotor action potentials, provoke a synchronous firing of skeletomotor neurones, mostly of those belonging to slow motor units. Possible effects of such a firing pattern on the resulting muscle reflex contraction and the stretch reflex stability as well as a possibility of it being provoked by fusimotor discharges are discussed.  相似文献   

7.
A method of detecting "minimal" excitatory postsynaptic potentials (EPSP) in neurons of hippocampal area CA3 of the unanesthetized rabbit during stimulation of the septo-fimbrial region and the dentate fascia is described. The method consists of presenting a strong (a current of up to 1 mA) conditioning stimulus, inducing a distinct inhibitory postsynaptic potential (IPSP), before a near-threshold (current of 0.03–0.35 mA) testing stimulus. The response to the testing stimulus, develoing after the previous conditioning IPSP, in most cases was purely depolarizing and, judging from the change in the latent period in some cases and the absence of correlation between its amplitude and that of the IPSP, it is a pure EPSP. If the testing stimuli are presented at low enough frequency (intervals of not less than 1 sec) the amplitude of the EPSP evoked by them gradually falls. This decrease exhibits some of the characteristic properties of extinction of behavioral responses (recovery after an interruption, a more rapid decrease during repeated series of stimuli, a slower decrease in amplitude during less frequent stimulation). The amplitude of the IPSP also fell or showed no significant change. The results are evidence in support of the hypothesis that extinction is based on a mechanism of homosynaptic depression.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 3–12, January–February, 1978.  相似文献   

8.
Changes in electrical activity of the isolated frog muscle spindle were investigated in hypertonic solutions obtained by adding 400 mM sucrose, glucose, or glycerol to Ringer's solution. The spontaneous firing rate in hypertonic sucrose and glucose solutions increased at first (for 3–5 min) and then fell rapidly to zero; the receptor potential and evoked spike activity diminished under these conditions and disappeared. In the hypertonic solution with glycerol a similar effect was observed but, unlike in the first two media, in this case spike activity returned after its initial increase to the normal level; a second rise in the firing rate was then observed up to a steady value which was higher than normal. After rinsing out the hypertonic sucrose and glucose solutions with ordinary Ringer's solution the spontaneous and evoked activity gradually returned to normal with a small overshoot. During the rinsing out of the hypertonic glycerol solution a sharp and considerable rise in spontaneous activity was first observed, while the changes in frequency of the evoked activity were negligible. The spike activity then returned to normal. The observed changes in electrical activity of the muscle spindle in hypertonic media are attributed to deformation of the sensory terminals and intrafusal muscle fibers (in the glycerol medium), leading to depolarization of the receptor membrane.P. K. Anokhin Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 291–299, May–June, 1976.  相似文献   

9.
The effects of applying adequate vestibular stimulation to the mesencephalic locomotor region on locomotor activity in fore- and hindlimb muscles was investigated during experiments on decerebrate guinea pigs. This stimulation was produced by linear sinusoidal shifting of the animal along a vertical axis at rates of 0.08, 0.2, 0.4, and 0.8 Hz (with peak accelerations of 0.010, 0.063, 0.252, and 1.010 m·sec–2 respectively). A downwards shift was found to increase electromyographic extensor muscle activity in fore- and hindlimbs occurring during the swing phase of the locomotor cycle. An upwards movement was accompanied by the opposite changes in muscle activity. Minimum acceleration required to produce an alteration in muscle activity equaled 0.063 m·sec–2 (0.006g). These alterations were characterized by cyclical delay in relation to linear (active) acceleration. Phase lags in the activity of fore- and hindlimb extensor muscles at the rate of 0.8 Hz reached 63° and 86° respectively. Changes in flexor muscle activity ran counterphasically to these; phasic delay equalled 264° and 275° respectively. The part played by the vestibular system in control over locomotor activity in vertebrate muscles is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 192–197, March–April, 1989.  相似文献   

10.
During regular firing of "small" motor units, activated during weak voluntary contraction of the human soleus muscle, thick efferent fibers of n. tibialis were stimulated (a small M response was evoked, in which the small units did not participate). Peristimulus histograms of potentials of single motor units were constructed and the effect of stimulation on interspike interval duration was analyzed. The firing rate of the motor units was 4.5–7.6 spikes/sec. Stimulation of the nerve led to a sharp decrease in probability of their discharge or even complete temporary cessation of firing, i.e., it had a well marked inhibitory effect (lasting 10–20 msec). The latent period of inhibition (35–40 msec) was only a little longer than the latent period of the monosynaptic reflex of the soleus muscle. The effect of an inhibitory volley on duration of the interspike interval of the motor units depended on the time when the volley arrived during the interval. Lengthening of the interval was observed only if the inhibitory volley arrived in the second half or at the end of the interval. It is concluded that inhibition of firing of small motor units is due to Renshaw cells, activated on stimulation of axons of large motoneurons. The efficiency of a short (compared with the duration of the interspike interval) inhibitory volley reaching a motoneuron firing at low frequency characteristic of its adequate activation, is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 88–96, January–February, 1984.  相似文献   

11.
The separate contributions of the recruitment level and of the firing rate of the motor units on the soundmyogram and electromyogram time domain parameters were investigated during stimulation of the motor nerve of the cat gastrocnemius muscle. Upon orderly increase in the number of active motor units at a fixed firing rate, both the peak to peak amplitude (P-Pmax) and the root mean square (RMS) of the sound myogram increased. At full recruitment the increase in firing rate from 2.5 to 50 Hz induced an exponential decline in the P-Pmax. The RMS, however, followed this trend only from 15 to 50 Hz while showing an increase from 2.5 to 10 Hz. During simultaneous changes of recruitment and firing rate, the effect of increasing the number of motor units on the P-Pmax and RMS is dampened by the increasing firing rate. The peak to peak amplitude of the EMG compound action potential increased with the number of active motor units. Moreover, its amplitude was not influenced by the firing rate. The EMG RMS, however, increases as a function of the firing rate. The results indicate that both the number and the firing rate of the active motor units contribute to the determination of the soundmyogram characteristics. Moreover, the peculiar changes of the soundmyogram time domain properties, compared to the ones of the EMG, allow one to differentiate the influence of the motor units number and firing rate on the electrical and mechanical performance of the muscle when stimulated.  相似文献   

12.
Monosynaptic testing of excitability in firing triceps surae muscle motoneurons activated during volitional contraction was performed using a technique for recording potentials from single motor units and by producing H-reflex. Motoneuronal excitability was assessed according to level of firing index. Motoneuronal firing index decreased during transition from a low background rhythmic firing rate of less than 6 spikes/sec to one of 6–8 spikes/sec. It hardly changed with a further rise in rate to 12 spikes/sec. The dependence between firing index and spike rate are put down to changes occurring in motoneuronal excitability during the interspike interval. Findings indicate that in the low frequency range of motoneuronal firing characteristic of natural muscle contraction, discharge rate may be considered one of the factors determining excitability in the motoneuron and hence its transmission qualities.Institute of Problems in Information Transmission, Academy of Sciences of the USSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 210–216, March–April, 1987.  相似文献   

13.
Changes in electrical activity of the isolated frog muscle spindle in Ringer's solution containing tetraethylammonium (TEA) ions were studied. An increase in the frequency of spontaneour activity was observed, but with continued perfusion with TEA solution both spontaneous afferent impulses and action potentials generated during stretching of the muscle receptor were blocked. The dynamic component of the depolarization phase of the receptor potential was reduced in amplitude and increased in duration. Rinsing the receptor in normal physiological saline did not restore its responses completely.Institute of Physiology, Leningrad State University. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 208–215, March–April, 1972.  相似文献   

14.
Summary Directionality and intensity dependence of antennal sweeps elicited by water jet stimulation of the tailfan in tethered, reversibly blinded adult and juvenile crayfish (Procambarus clarkii) were analyzed.Resting crayfish keep their antennae at about 50° symmetrically to the longitudinal body axis (Figs. 2 bottom, and 3).In adults, tailfan stimulation elicits synchronous backward sweeps of both antennae, which increase for more caudal stimulus directions (Figs. 2–4 and 5A). Directions differing by 30°–60° are significantly distinguished (Fig. 4). The mean sweep of the ipsilateral antenna significantly overrides that of the contralateral antenna for rostrolateral stimulation at 40–200 mm/s stimulus velocity and lateral to caudolateral stimulation at 40 mm/s and thus lateralization of the stimulus is revealed (Figs. 2 top, 4 and 5A). Mean antennal sweeps at a given stimulus direction and distance increase with increasing stimulus velocity (40–250 mm/s, Fig. 5A).In juveniles, the directional dependence of antennal sweeps is reduced compared to that of adults, while a similar intensity dependence is found (Fig. 5B).The pronounced directionality of the antennal response in adult crayfish vanishes and response latencies increase after reversibly covering the tailfan with a small bag or the telson with waterproof paste (Figs. 6 and 7). Thus, tailfan and especially telson mechanoreceptors play an important role in the localization of water movements elicited by predators or prey behind the crayfish.  相似文献   

15.
Synaptic response to regular stimulation of midbrain and bulbar locomotor sites (LS) and a pontine inhibitory site (IS) was recorded in medial and lateral bulbar neurons in cats (mesencephalic decerebellate preparation). Excitatory post-synaptic potentials (PSP) and discharges were usually noted in medial neurons; mixed PSP also occurred when stimulating the IS. Almost 50% of lateral and over 25% of medial neurons showed a change in background firing rate, failing to generate response time-locked to stimulus. Medial neurons producing a response time-locked to the stimulus showed equal sensitivity to stimulation of midbrain and bulbar LT and very little reaction to IS stimulation. Medial neurons with a response not time-locked to stimuli together with lateral neurons were most receptive to input from the bulbar LS, less sensitive to stimulation of the midbrain LS, and least responsive of all to IS stimulation. Convergence between influences from midbrain and bulbar LS was the same in neurons of all populations. The part played by different neuronal populations in initiation and cessation of locomotion is discussed.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 297–306, May–June, 1991.  相似文献   

16.
Changes in the mean firing rate of posterior hypothalamic neurons were studied in experiments on unanesthetized cats in response to elevation of the brain temperature by 0.7–1.5°C and the skin temperature by 3–5°C separately or simultaneously. Altogether 85 neurons were studied in 14 animals: 11 responded to only one form of temperature stimulation, whereas in 16 neurons changes in the firing pattern (in most cases in the same direction) were observed in response to both forms of temperature stimulation. Different types of responses of these neurons were established. Sensitivity to the central temperature stimulus was increased in some neurons of this group when skin temperature stimulation was intensified.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 613–619, November–December, 1976.  相似文献   

17.
Summary Single unit electrophysiological recordings were obtained from efferent fibres in the statocyst nerves ofOctopus vulgaris. A preparation comprising the CNS and a single statocyst was employed. 42% of the efferents displayed a level of resting activity; transient changes in this activity occurred at irregular intervals.The responses of the efferent units were examined during sinusoidal oscillations of the statocyst at stimulus frequencies between 0.01–1 Hz, and amplitudes up to 35°. 84% of the units showed activity synchronised with the imposed oscillations; the time taken to establish this response varied for different units (Fig. 1).The lowest stimulus frequency at which a unit could be entrained varied for different units, with those units with a resting level of activity having the lowest thresholds. The peak firing frequency of the efferents was found to increase with increasing stimulus frequency or amplitude (Fig. 3). However, the change in firing frequency was much smaller than that reported for the statocyst afferents to similar stimuli.The efferent units of the posterior crista nerve were found to respond to clockwise or anticlockwise rotations (Fig. 4), with the individual units having unipolar responses. The phase response of the units changed little with increasing stimulus amplitude but an increase in phase lag occurred with an increase in the stimulus frequency (Fig. 5). The form of this relationship (Fig. 6) was similar to that reported for the statocyst crista afferents.The principal source of the input to the efferents in these experiments was shown to be afferents from the contralateral statocyst. These results are discussed and compared with data from the vertebrate semicircular canal system.  相似文献   

18.
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.  相似文献   

19.
Inhibition of association cortical neurons (in the form of inhibition of spontaneous activity or of IPSPs) during direct and transcallosal stimulation was studied in cats immobilized with muscle relaxants. The duration of inhibition of stimulation and the number of stimuli. With an increase in the strength of stimulation inhibition deepened to a certain level for a particular neuron, after which it could be further lengthened with an increase in the number of stimuli. In the case of repeated stimulation by volleys of stimuli, very prolonged inhibition developed gradually in the neurons, during which spontaneous activity was inhibited for 2–5 sec. The duration of the IPSP depended on the intensity of stimulation and number of stimuli and its amplitude depended on the intensity and frequency of stimulation and on the number of stimuli. In some cases the amplitude of the IPSP continued to rise after a short volley of stimuli, even after the end of stimulation. An increase in the number of stimuli in the volley lengthened the IPSPs, but their amplitude remained constant throughout the period of stimulation. Prolonged inhibition (up to a few seconds) was connected with the development of a hyperpolarization postsynaptic potential in the neurons. It is suggested that neurons exerting a monosynaptic inhibitory influence on cells of the association cortex may be located in the opposite hemisphere.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 133–141, March–April, 1981.  相似文献   

20.
Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号