首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid glands of cattle, dogs, cats, mice and rats were immersed in glutaraldehyde or mixtures consisting of glutaraldehyde, formaldehyde and acrolein in either Na-phosphate, Na/K-phosphate or Na-cacodylate buffer, and postfixed with OsO4 in the same buffers or, alternatively, in s-collidine. Excellent preservation of bovine, feline and murine parathyroid glands was achieved with fixation mixtures containing 1% glutaraldehyde, 1.5-2% formaldehyde and 2.5-5% acrolein in 0.1 M Na-cacodylate with or without Ca2+ and Mg2+, Na-phosphate or Na/K-phosphate at 4 degrees C followed by postfixation with 1% OsO4 in the same buffers or in s-collidine containing sucrose, Ca2+ and Mg2+. This procedure largely abolished the occurrence of parathyroid cell variants. Bovine parathyroid glands were also satisfactorily preserved with 1% glutaraldehyde and 2% formaldehyde whereas 1% glutaraldehyde and 2.5 or 5% acrolein, lower or higher buffer osmolarity, or immersion at room temperature led to vacuolization of RER and to breakdown of membranes. In contrast, all fixation protocols led to the formation of dark and light cell variants and to multinucleated syncytial cells in dog and rat parathyroids. The results thus show that parathyroid cell variants arise during immersion fixation and that aldehydes, buffers and temperature are important factors for provoking parathyroid cell variants.  相似文献   

2.
Summary Parathyroid glands of cattle, dogs, cats, mice and rats were immersed in glutaraldehyde or mixtures consisting of glutaraldehyde, formaldehyde and acrolein in either Na-phosphate, Na/K-phosphate or Na-cacodylate buffer, and postfixed with OsO4 in the same buffers or, alternatively, in s-collidine.Excellent preservation of bovine, feline and murine parathyroid glands was achieved with fixation mixtures containing 1% glutaraldehyde, 1.5–2% formaldehyde and 2.5–5% acrolein in 0.1 M Na-cacodylate with or without Ca2+ and Mg2+, Na-phosphate or Na/K-phosphate at 4°C followed by postfixation with 1% OsO4 in the same buffers or in s-collidine containing sucrose, Ca2+ and Mg2+. This procedure largely abolished the occurence of parathyroid cell variants. Bovine parathyroid glands were also satisfactorily preserved with 1% glutaraldehyde and 2% formaldehyde whereas 1% glutaraldehyde and 2.5 or 5% acrolein, lower or higher buffer osmolarity, or immersion at room temperature led to vacuolization of RER and to breakdown of membranes. In contrast, all fixation protocols led to the formation of dark and light cell variants and to multinucleated syncytial cells in dog and rat parathyroids. The results thus show that parathyroid cell variants arise during immersion fixation and that aldehydes, buffers and temperature are important factors for provoking parathyroid cell variants.  相似文献   

3.
Rat parathyroids fixed by microwave enhancement, i.e. microwave irradiation in the presence of glutaraldehyde for 8 s and postfixation with OsO4 after a delay of 5 min, were compared with parathyroids fixed by perfusion with glutaraldehyde followed by immersion in glutaraldehyde and finally in OsO4. Morphometric analysis revealed that microwave enhanced fixation led to a larger mean cell volume, to larger cell surface area, and to larger surface area in membranes of RER and secretory granules. Though it is not known by which method parathyroid cells are conserved closer to the living state it is obvious that microwave enhanced fixation retains more membranes but provokes centrifugal dislocation of membranes mimicking exocytosis.  相似文献   

4.
Summary Rat parathyroids fixed by microwave enhancement, i.e. microwave irradiation in the presence of glutaraldehyde for 8 s and postfixation with OsO4 after a delay of 5 min, were compared with parathyroids fixed by perfusion with glutaraldehyde followed by immersion in glutaraldehyde and finally in OsO4. Morphometric analysis revealed that microwave enhanced fixation led to larger mean cell volume, to larger cell surface area, and to larger suface area in membranes of RER and secretory granules. Though it is not known by which method parathyroid cells are conserved closer to the living state it is obvious that microwave enhanced fixation retains more membranes but provokes centrifugal dislocation of membranes mimiking exocytosis.  相似文献   

5.
The influence of fixation methods, buffers and ions on the ultrastructure of parathyroid cells was studied in dogs, cats, rats and mice. Parathyroids fixed by immersion showed 3 chief cell variants referred to as cells in active, intermediate and resting stages, multinucleated syncytial cells, atrophic cells and, only in 1 feline parathyroid, a few oxyphil cells. Parathyroid glands fixed by perfusion, however, consisted only of 1 cell type. Satisfactory preservation was achieved by perfusion with 2.5% glutaraldehyde in 0.1 M Na cacodylate containing 0.25 mM CaCl2 and 0.5 mM MgCl2, and postfixation with 1% OsO4 in 0.1 M s-collidine containing 0.5 mM CaCl2 and 1.0 mM MgCl2. Good preservation was also obtained using Na phosphate during prefixation and postfixation. Other combinations of buffers led to shrinkage, dilation of rough endoplasmic reticulum cisternae, disruption of membranes or loss of matrix and secretory granules. The results demonstrate that the variants of parathyroid chief cells, multinucleated syncytial cells and atrophic cells arise during fixation.  相似文献   

6.
An antibody (LK2H10) to chromogranin A has been recommended for use in ultrastructural identification of neuroendocrine secretory granules. Previous studies have demonstrated immunoreactive chromogranin A in specimens prepared for electron microscopy by glutaraldehyde fixation only. In this study, the effect of specimen post-fixation by osmium tetroxide on post-embedding localization of chromogranin A was evaluated. Human tissues from benign endocrine glands, neuroendocrine tumors, and non-neuroendocrine tumors were post-fixed in osmium, embedded in epoxy resin, and the sample thin sections immunolabeled using a protein A-gold technique. Chromogranin A-positive neurosecretory granules were detected in pancreatic islets, adrenal medulla, stomach, ileum, anterior pituitary, and parathyroid. Mid-gut carcinoids, bronchial carcinoids, pheochromocytomas, paragangliomas, carotid body tumors, and thyroid medullary carcinomas contained immunoreactive granules. Cytoplasmic granules in non-neuroendocrine tumors did not react for chromogranin A. Tissues post-fixed in osmium tetroxide had optimally preserved ultrastructural features, and use of this fixative is compatible with postembedding localization of chromogranin A in neurosecretory granules.  相似文献   

7.
H G Heumann 《Histochemistry》1992,97(4):341-347
Microwave-enhanced fixation of animal tissues for electron microscopy has gained in interest in recent years. Attempts to use microwave irradiation for the preparation of plant tissues are rare. In this study; I report on microwave conditions which allow a high quality preservation of plant cell structure. Tissues used were: internodes of Chara vulgaris, leaves of Hordeum vulgare, root tips of Lepidium sativum. Microwave irradiation was done with a commercial microwave oven (Sharp R-5975). Fixatives used were: 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 and 1% osmium tetroxide in veronal/acetate buffer, pH 7.2. Conventional fixations with glutaraldehyde/osmium were compared with microwave fixations. Examinations of thin sections showed that microwave fixation (glutaraldehyde or sequential aldehyde/osmium) is an attractive and rapid alternative method for processing plant tissues for electron microscopy. The optimal conditions found were: microwave oven at power level 50 W, 6.5 ml of fixative solution, irradiation times between 32-34 s, final temperature between 40 degrees C and 47 degrees C.  相似文献   

8.
Activities of Ca2(+)-dependent ATPase, Mg2(+)-dependent ATPase, Na(+)-K(+)-dependent ATP-ase, alkaline phosphatase, and 5'-nucleotidase were demonstrated after incubation of 40-microns vibratome sections of bovine parathyroids and subsequent visualization by electron microscopy. Prior to sectioning, parathyroid tissue was fixed with 1% glutaraldehyde for localization of alkaline phosphatase, and with 2% formaldehyde and 1% glutaraldehyde for demonstration activities of ATPases and 5'-nucleotidase. The activities of the five enzymes were found at the apicolateral domain of the plasma membrane in parathyroid cells, i.e. at the site parathyroid cells face neighbouring parenchymal cells. Ca2(+)-ATPase activity was also seen on mitochondria, Golgi complex and RER. The presence of these plasma membrane associated enzymes at the apicolateral domain only indicate polarity in parathyroid cells. It further suggests that many processes including transmembrane transport take place at the apicolateral domain, the site of parathyroid cells opposing blood capillaries.  相似文献   

9.
Summary Liver tissue of normal and glycogen depleted rats was prepared for transmission electron microscopy by perfusion fixation and subsequent osmication in the presence of various buffers, dehydration in aethanol and embedding in epon. The use of Na/K-phosphate or Nacacodylate to buffer glutaraldehyde led to similar appearance and distribution of SER. When Na-cacodylate was used during osmication, more SER membranes were retained but less accumulations of glycogen were found than after osmication in the presence of Na/K-phosphate. Fixation with s-collidine buffered osmium led to an easily recognisable network of SER comprising wide tubules whereas glycogen was hindered to be stained. Veronal acetate or Na-cacodylate supplemented with sucrose resulted in marked dilation and disintegration of SER. A similar effect was obtained when Na/K-phosphate or Na-cacodylate was used in hyposmolar concentration as buffer for glutaraldehyde. Liver of fasted rats or glucagon-treated rats after perfusion with Na/K-phosphate buffered glutaraldehyde and osmication in the presence of Na/K-phosphate or Na-cacodylate comprised glycogen-depleted hepatocytes which contained abundant SER membranes occupying the entire space between other organelles even in samples harvested 3 h after glucagon administration. The diversity in appearance and distribution of SER and glycogen granules, which depends to a large extend on the buffer used, suggests that SER membranes may not be sufficiently stabilized during aldehyde fixation and osmication. We thus consider it likely that large accumulations of glycogen granules are the consequence of disintegration of SER membranes during processing rather than they represent the morphologic substrate of physiological degradation of SER membranes in the course of glycogen synthesis and deposition.  相似文献   

10.
The ultrastructure of Candida krusei   总被引:1,自引:0,他引:1  
Various methods of chemical fixation and freeze-drying of Candida krusei were compared to determine the most appropriate method for the ultrastructural investigation of the thick walled organisms of this genus. Freeze-drying without chemical fixation was of little value because of insufficient variation in electron density. Potassium permanganate was able to penetrate the intact cell but failed to show cytoplasmic glycogen and lipid and some details of the cell wall. While normal glutaraldehyde, formaldehyde and osmium tetroxide treatment failed to permeate and preserve intracellular structures, several cycles of rapid freezing (–155°C) and thawing followed by glutaraldehyde fixation and osmium tetroxide post-fixation demonstrated the intracellular details of the majority of cells so treated.  相似文献   

11.
D Kuhn  P Wild 《Histochemistry》1992,97(1):5-11
Liver tissue of normal and glycogen depleted rats was prepared for transmission electron microscopy by perfusion fixation and subsequent osmication in the presence of various buffers, dehydration in aethanol and embedding in epon. The use of Na/K-phosphate or Na-cacodylate to buffer glutaraldehyde led to similar appearance and distribution of SER. When Na-cacodylate was used during osmication, more SER membranes were retained but less accumulations of glycogen were found than after osmication in the presence of Na/K-phosphate. Fixation with s-collidine buffered osmium led to an easily recognisable network of SER comprising wide tubules whereas glycogen was hindered to be stained. Veronal acetate or Na-cacodylate supplemented with sucrose resulted in marked dilation and disintegration of SER. A similar effect was obtained when Na/K-phosphate or Na-cacodylate was used in hyposmolar concentration as buffer for glutaraldehyde. Liver of fasted rats or glucagon-treated rats after perfusion with Na/K-phosphate buffered glutaraldehyde and osmication in the presence of Na/K-phosphate or Na-cacodylate comprised glycogen-depleted hepatocytes which contained abundant SER membranes occupying the entire space between other organelles even in samples harvested 3 h after glucagon administration. The diversity in appearance and distribution of SER and glycogen granules, which depends to a large extend on the buffer used, suggests that SER membranes may not be sufficiently stabilized during aldehyde fixation and osmication. We thus consider it likely that large accumulations of glycogen granules are the consequence of disintegration of SER membranes during processing rather than they represent the morphologic substrate of physiological degradation of SER membranes in the course of glycogen synthesis and deposition.  相似文献   

12.
Summary Microwave-enhanced fixation of animal tissues for electron microscopy has gained in interest in recent years. Attempts to use microwave irradiation for the preparation of plant tissues are rare. In this study, I report on microwave conditions which allow a high quality preservation of plant cell structure. Tissues used were: internodes of Chara vulgaris, leaves of Hordeum vulgare, root tips of Lepidium sativum. Microwave irradiation was done with a commercial microwave oven (Sharp R-5975). Fixatives used were: 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 and 1% osmium tetroxide in veronal/acetate buffer, pH 7.2. Conventional fixations with glutaraldehyde/osmium were compared with microwave fixations. Examinations of thin sections showed that microwave fixation (glutaraldehyde or sequential aldehyde/osmium) is an attractive and rapid alternative method for processing plant tissues for electron microscopy. The optimal conditions found were: microwave oven at power level 50 W, 6.5 ml of fixative solution, irradiation times between 32–34 s, final temperature between 40° C and 47° C.  相似文献   

13.
Summary Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells.Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration.We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

14.
Size changes in single muscle fibers during fixation and embedding.   总被引:2,自引:0,他引:2  
During fixation of single muscles fibers with glutaraldehyde, the volume of the fiber shrinks 20%, recovers in rinse and osmium tetroxide to near normal volume and shrinks 20% again when staining with uranyl acetate. This suggest that osmotic properties of membranes may not have been completely lost during fixation, post-fixation and en bloc staining. Dehydration in ethanol and propylene oxide produces a further 10% shrinkage in volume. Infiltration and embedding with Epon causes an additional 15% change in volume. This gives a total shrinkage in volume of 45% which is nearly twice that of the apparent shrinkage in the volume of the myosin lattice as determined by electron microscopy.  相似文献   

15.
IN keeping with its widespread use in biochemical studies, the ultrastructure of the unicellular green alga Chlorella has been investigated many times1–3, yet at least two components—microtubules and centrioles—have escaped detection, doubtless because of the use of inadequate fixation techniques. We report here on the presence and behaviour of these subcellular components during the cell cycle in C. pyrenoidosa 211-8p grown autotrophically in cultures synchronized4 by alternating light (time 0–15 h) and dark (15–24 h) periods and sampled for examination by electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde (pH 6.7, 25° C, 2 h) and post-fixation in 2% osmium tetroxide (pH 7, 0° C, 2 h).  相似文献   

16.
Potency of microwave irradiation during fixation for electron microscopy   总被引:1,自引:0,他引:1  
Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells. Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration. We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

17.
Summary The preparation technique of electron microscopy was adapted to light microscopy, in attempts to obtain well preserved implantation sites. The most appropriate technique comprised perfusion fixation in glutaraldehyde, post-fixation in osmium acid, Epon-embedding, ultramicrotomy, and staining with toluidine blue.The morphology of the early mouse embryo from the time of nidation to mesoderm formation is described: the formation of Reichert's membrane occurs already at 6 1/2 days, by which time free trophoblast cells are to be found in the uterine cavity.  相似文献   

18.
The apical part of the urinary bladder granular cells contains oval granules filled with a homogenous substance; close to the plasma membrane granules with tubular element are disposed. A preliminary 30 min fixation of the bladder epithelium with 0.1--0.5% glutaraldehyde followed by 2.5% glutaraldehyde post-fixation rather increased the number of granules with the orderly distributed inner material. The membrane of these granules includes in to the plasma membrane. The loosening of the inner material takes place and the fibrillar elements similar in structure to the glycocalix fibrilles attach to the external surface of the cell plasma membrane.  相似文献   

19.
Adrenomedullin (ADM) is a new potent vasorelaxant peptide identified originally in extracts of pheochromocytoma, and is widely distributed within the tissue. Although histopathological studies have demonstrated the presence of ADM-immunoreactivity (ir-ADM) in some human neuroendocrine tumors (such as insulinoma, pituitary adenoma, and gastrointestinal neuroendocrine tumors), data on the presence of ADM in normal and pathological parathyroid gland are not available. Plasma AM concentrations were recently reported to be elevated in patients with PHP (primary hyperparathyroidism). The aim of our study was to determine tissue distribution of ir-AM in 34 patients with PHP (27 female and 7 male, mean age 50 +/- 6 years) undergoing surgery. Six normal parathyroid samples incidentally found during thyroidectomy for neoplastic diseases and ten sections of human rectus abdominis muscle tissue were used as controls (C). Adenomatous parathyroids were found in 22 PHP and hyperplastic parathyroids in twelve PHP patients. Four hyperplastic parathyroids were found in three PHP patients and three parathyroids in 10 PHP patients. Eight parathyroids revealed a prevalent diffuse growth pattern and four showed a prevalent nodular growth pattern. Immunohistochemical ADM expression was seen in seven of twelve (58.3 %) hyperplastic parathyroids and in fourteen of twenty-two (66.6 %) adenomatous glands. Parathyroid chief cells showed strong cytoplasmatic staining, whereas oncocytic cells showed a faintly aspecific cytoplasmatic staining. Normal parathyroids were negative for ir-ADM. In conclusion, we found the presence of ADM in parathyroid chief cells of PHP patients using immunohistochemistry in our study.  相似文献   

20.
Synopsis A densitometric method was utilized in the measurement of the relative thickness of the cellular membranes in the ventral lobe of the rat prostate. Potassium permanganate, glutaraldehyde, osmium tetroxide, and ruthenium tetroxide solutions were used as fixatives. During preparation for electron microscopy, the tissues were given standardized treatments to reduce methodological errors; latex particles were applied to the thin sections to serve as reference particles of a known size. The most remarkable observation of the study was that the densitometric method yielded reproducible results and that the different fixatives gave significantly different values for the relative thickness of cellular membranes. Glutaraldehyde, or glutaraldehyde followed by ruthenium tetroxide post-fixation, gave the highest values for membrane thickness while osmium tetroxide and potassium permanganate gave the lowest values. Glutaraldehyde treatment, prior to osmium tetroxide or potassium permanganate post-fixations, rendered the membranes thicker than after osmium tetroxide and potassium permanganate treatments alone. Ruthenium tetroxide appeared to be very suitable for fixation of cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号