首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A novel member of the S100 protein family, present in human placenta, has been characterized by protein sequencing, cDNA cloning, and analysis of Ca(2+)-binding properties. Since the placenta protein of 95 amino acid residues shares about 50% sequence identity with the brain S100 proteins alpha and beta, we proposed the name S100P. The cDNA was expressed in Escherichia coli and recombinant S100P was purified in high yield. S100P is a homodimer and has two functional EF hands/polypeptide chain. The low-affinity site (Kd = 800 microM), which, in analogy to S100 beta, seems to involve the N-terminal EF hand, can be followed by the Ca(2+)-dependent decrease in tyrosine fluorescence. The high-affinity site, provided by the C-terminal EF hand, influences the reactivity of the sole cysteine which is located in the C-terminal extension (Cys85). Binding to the high-affinity site (Kd = 1.6 microM) can be monitored by fluorescence spectroscopy of S100P labelled at Cys85 with 6-proprionyl-2-dimethylaminonaphthalene (Prodan). The Prodan fluorescence shows a Ca(2+)-dependent red shift of the maximum emission wavelength from 485 nm to 502 nm, which is accompanied by an approximately twofold loss in integrated fluorescence intensity. This indicates that Cys85 becomes more exposed to the solvent in Ca(2+)-bound S100P, making this region of the molecule, the so-called C-terminal extension, an ideal candidate for a putative Ca(2+)-dependent interaction with a cellular target. In p11, a different member of the S100 family, the C-terminal extension which contains a corresponding cysteine (Cys82 in p11), is involved in a Ca(2+)-independent complex formation with the protein ligand annexin II. The combined results support the hypothesis that S100 proteins interact in general with their targets after a Ca(2+)-dependent conformational change which involves hydrophobic residues of the C-terminal extension.  相似文献   

2.
Malm J  Jonsson M  Frohm B  Linse S 《The FEBS journal》2007,274(17):4503-4510
The zinc-binding protein semenogelin I is the major structural component of the gelatinous coagulum that is formed in freshly ejaculated semen. Semenogelin I is a rapidly evolving protein with a primary structure that consists of six repetitive units, each comprising approximately 60 amino acid residues. We studied the secondary and tertiary structure of semenogelin I by circular dichroism (CD) spectroscopy and Trp fluorescence emission spectroscopy. Fitting to the far-UV CD data indicated that the molecule comprises 5-10% alpha-helix and 20-30% beta-sheet formations. The far-UV spectrum of semenogelin I is clearly temperature dependent in the studied range 5-90 degrees C, and the signal at 222 nm increased with increasing temperature. The presence of Zn(2+) did not change the secondary structure revealed by the far-UV CD spectrum, whereas it did alter the near-UV CD spectrum, which implies that rearrangements occurred on the tertiary structure level. The conformational change induced in semenogelin I by the binding of Zn(2+) may contribute to the ability of this protein to form a gel.  相似文献   

3.
S100P is a member of the S100 subfamily of calcium-binding proteins that are believed to be associated with various diseases, and in particular deregulation of S100P expression has been documented for prostate and breast cancer. Previously, we characterized the effects of metal binding on the conformational properties of S100P and proposed that S100P could function as a Ca2+ conformational switch. In this study we used fluorescence and CD spectroscopies and isothermal titration calorimetry to characterize the target-recognition properties of S100P using a model peptide, melittin. Based on these experimental data we show that S100P and melittin can interact in a Ca2+-dependent and -independent manner. Ca2+-independent binding occurs with low affinity (Kd approximately 0.2 mM), has a stoichiometry of four melittin molecules per S100P dimer and is presumably driven by favorable electrostatic interactions between the acidic protein and the basic peptide. In contrast, Ca2+-dependent binding of melittin to S100P occurs with high affinity (Kd approximately 5 microM) has a stoichiometry of two molecules of melittin per S100P dimer, appears to have positive cooperativity, and is driven by hydrophobic interactions. Furthermore, Ca2+-dependent S100P-melittin complex formation is accompanied by significant conformational changes: Melittin, otherwise unstructured in solution, adopts a helical conformation upon interaction with Ca2+-S100P. These results support a model for the Ca2+-dependent conformational switch in S100P for functional target recognition.  相似文献   

4.
Interactions of trifluoperazine (TFP) with S100 proteins, EF-hand type Ca2+-binding proteins, in the presence of Ca2+ and Zn2+ were studied with induced circular dichroism (CD) and fluorescence spectra. The positive CD bands of TFP were induced at around 265 nm by adding either S100a or S100a0 protein in the presence of Ca2+. No CD band of TFP was, however, induced by adding S100b protein in the presence of Ca2+. Addition of Zn2+ to the TFP/S100 protein solutions did not induce any CD band at all. The fluorescence intensity of 2-p-toluidinylnaphthalene 6-sulfonate (TNS) bound to S100a or S100a0 protein decreased by adding TFP in the presence of Ca2+, while that bound to S100b protein decreased by adding TFP in the presence of Zn2+, indicating that TFP binds to S100a protein and S100a0 protein in a Ca2+-dependent manner and to S100b protein in a Zn2+-dependent manner. From these results together with other experimental findings it was suggested that (1) TFP binds to S100a protein and S100a0 protein in the presence of Ca2+, with half-saturation points of 18 and 3 microM, respectively, (2) TFP binds to S100b protein only in the presence of Zn2+, (3) alpha-subunit of S100 protein binds to TFP specifically in a Ca2+-dependent manner and beta-subunit in a Zn2+-dependent manner.  相似文献   

5.
Yang ZC  Yang L  Zhang YX  Yu HF  An W 《The protein journal》2007,26(5):303-313
Hepatic stimulator substance (HSS) is a novel liver-specific growth-promoting factor. Although HSS has been successfully crystallized, several properties of this protein have yet to be determined. This study shows that recombinant human HSS (rhHSS) is a dimer with a molecular mass of 31 kDa, The protein is weakly acidic and has an isoelectric point (pI) of 4.50. rhHSS was able to protect hepatoma cells from H2O2-induced apoptosis and to stimulate cell growth. The recombinant protein was thermostable up to 80°C and resistant to changes in pH, as determined by synchronous fluorescence and far-UV circular dichroism (CD). Within the range of pH 4.0–10.0, rhHSS assumed a folded conformation identical to the secondary structure of the original, native protein and a native-like far-UV CD spectrum. Denatured rhHSS could be partly reconstituted with respect to its structure, but not its activity. Thus, rhHSS is a structurally stable protein insensitive to thermal and acid–alkaline denaturation.  相似文献   

6.
T M Laue  R Lu  U C Krieg  C T Esmon  A E Johnson 《Biochemistry》1989,28(11):4762-4771
The calcium dependence of the structures of bovine blood coagulation factor Va and its subunits (Vh and Vl) has been examined spectroscopically in order to characterize the conformational changes which accompany the binding of Ca2+ to Vh and Vl to form factor Va. The far-UV CD spectra of the isolated subunits indicate that the secondary structures of both Vh and Vl are predominantly beta-sheet (greater than 45%), with little alpha-helix content (less than 15%). No change in the far-UV CD spectrum was observed when factor Va was formed by the addition of Ca2+ to an equimolar mixture of Vl and Vh. Hence, no detectable change in secondary structure occurs during the formation of factor Va. In contrast, the addition of Ca2+ to an equimolar mixture of Vh and Vl caused a small (2%) increase in the total intrinsic fluorescence intensity and a blue shift in the emission spectrum that resulted from a tertiary structural change and/or the association of nonpolar surfaces at the subunit interface. This fluorescence change correlated closely with the appearance of functional factor Va, since the rate of the spectral change was the same as the rate of recovery of cofactor activity, and since both were half-maximal near 50 microM Ca2+. This fluorescence change required both subunits, was reversed by the addition of EDTA, and was observed only with metal ions that can substitute for Ca2+ in reconstituting factor Va activity from Vh and Vl (Mn2+ and Tb3+; not Mg2+). When a sample containing ANS (8-anilino-1-naphthalenesulfonate) and an equimolar mixture of calcium-free Vh and Vl was titrated with Ca2+, the ANS emission intensity decreased by about 30%, most likely because the association of Vl and Vh caused nonpolar regions at the subunit-subunit interface to become inaccessible for ANS binding. The calcium dependence of this spectral change yielded a Kd of 51 +/- 2 microM, and the rate of the decrease in ANS fluorescence occurred at nearly the same rate as the recovery of factor Va activity. Thus, both intrinsic and extrinsic fluorescence data, as well as other data, indicate that the calcium binding site in factor Va has an apparent Kd of 50 microM under our conditions and that the calcium-mediated binding between Vl and Vh involves hydrophobic interactions between the subunits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The interaction of S-100b protein with cardiolipin (CL) vesicles has been studied by electron spin resonance, pyrene fluorescence, and circular dichroism. Electron spin resonance and pyrene fluorescence data indicate that S-100b binds to the polar surface of vesicles Ca2+-independently. In the presence of Ca2+, S-100b potentiates the Ca2+-induced clustering of the polar headgroups of CL molecules and causes a further reduction in the Ca2+-dependent decrease in the lateral mobility of the pyrene inserted into the lipid bilayer, which points to an effect of the protein on the hydrophobic core of the lipid bilayer through a larger perturbation of its polar surface. Circular dichroism analyses indicate that CL vesicles cause a decrease in the alpha-helical content of S-100b, analogous to that produced by Ca2+ and that the effects of CL vesicles and of Ca2+ on the secondary structure of the protein are supra-additive. By this technique, we found that the affinity of Ca2+ for S-100b increases substantially in the presence of CL vesicles, even in the presence of physiologic concentrations of KCl, suggesting that once S-100b had interacted with CL vesicles it assumes a new conformation in which its Ca2+-binding properties are greatly enhanced. These results are discussed in relation to binding of S-100b proteins to natural membranes, and to a possible involvement of S-100b in the regulation of membrane structural organization.  相似文献   

8.
Calbindin-D(28K) is a biologically important protein required for normal neural function and for the transport of calcium in epithelial cells of the intestine and kidney. We have used fluorescence and circular dichroism (CD) spectroscopy to characterize the effects of calcium binding on the structure and stability of calbindin. Ca(2+) titration monitored by fluorescence spectroscopy reveals the presence of two classes of calcium-binding sites with association constants approximately 10(7.5) and approximately 10(8.9)M(-1). CD spectra in the far-UV spectral range show minor changes upon Ca(2+) titration, implying that the secondary structure of calbindin-D(28K) is not greatly affected. On the basis of the CD spectra in the near-UV spectral range, we conclude that the tertiary structure is more sensitive to Ca(2+) addition. The most significant change occurs between pCa 7.0 and pCa 8.0. The variations in the protein thermostability are correlated with those in the near-UV CD spectra. The enthalpy changes upon heat denaturation of calbindin in the apo-state are characteristic of proteins containing several weakly interacting domains with similar thermodynamical properties. Thus, calcium binding by calbindin-D(28K) largely affects the local structure around the aromatic residues and the thermal stability of the protein; the changes in the secondary structure are insignificant.  相似文献   

9.
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.  相似文献   

10.
Rajini B  Graham C  Wistow G  Sharma Y 《Biochemistry》2003,42(15):4552-4559
AIM1 (absent in melanoma), a candidate suppressor of malignancy in melanoma, is a nonlens member of the betagamma-crystallin superfamily, which contains six predicted betagamma domains. The first betagamma-crystallin domain of AIM1 (AIM1-g1) diverges most in sequence from the superfamily consensus. To examine its ability to fold and behave like a normal betagamma domain, we cloned AIM1-g1 and overexpressed it in Escherichia coli as a recombinant protein. The recombinant domain was found to be a stable, soluble protein, similar to lens protein gammaBeta-crystallin in secondary structure. The tertiary structure of AIM1-g1 is dominated by the contribution of aromatic amino acids and cysteine. AIM1-g1 undergoes concentration-independent, noncovalent homodimerization with no trace of monomer, similar to a one-domain protein spherulin 3a. Since many betagamma domain proteins bind calcium, we have also investigated the calcium-binding properties of AIM1-g1 by various methods. AIM1-g1 binds the calcium-mimic dye Stains-all, the calcium probe terbium (with K(D) 170 microM), and (45)Ca when blotted on a membrane. AIM1-g1 binds calcium (K(D) 30 microM) with a comparatively higher affinity than bovine lens gamma-crystallin (90 microM). However, calcium binding does not induce significant change in the protein conformation in the near- and far-UV CD and in fluorescence. The AIM1-g1 domain is as stable as domains of betagamma-crystallins (betaB2- or gammaS-crystallins) as monitored by guanidinium chloride unfolding (midpoint of unfolding transition is 1.8 M GdmCl), and the stability of the protein is not altered upon binding calcium as evaluated by equilibrium unfolding. These results show that, despite the sequence variation, AIM1-g1 folds such as a betagamma domain, binds calcium and undergoes dimerization.  相似文献   

11.
Oyster (Pinctada fucata) calmodulin-like protein (CaLP), containing a C-terminally extra hydrophilic tail (150D–161K), is a novel protein involved in the regulation of oyster calcium metabolism. To investigate the importance of the extra fragment to the Ca2+/Mg2+-dependent conformational changes in the intact CaLP molecule and the interactions between CaLP and its target proteins, a truncated CaLP mutant (M-CaLP) devoid of the extended C-terminus was constructed and overexpressed in Escherichia coli. The conformational characteristics of M-CaLP were studied by CD and fluorescence spectroscopy and compared with those of the oyster CaM and CaLP. The far-UV CD results reveal that the extra tail has a strong effect on the Ca2+-induced, but a relatively weak effect on the Mg2+-induced conformational changes in CaLP. However, upon Ca2+ or Mg2+ binding, only slight changes for intrinsic phenylalanine and tyrosine fluorescence spectra between M-CaLP and CaLP are observed. Our results also indicate that the extra tail can significantly decrease the exposure of the hydrophobic patches in CaLP. Additionally, affinity chromatography demonstrates that the target binding of CaLP is greatly influenced by its additional tail. All our results implicate that the extra tail may play some important roles in the interactions between CaLP and its targets in vivo.  相似文献   

12.
Conformational changes in the beta-subunit of the bovine brain Ca2+-binding protein S100b (S100-beta) accompanying Ca2+ binding were investigated by analysis of the spectroscopic properties of the single tyrosine residue (Tyr17 beta) and flow-dialysis binding experiments. S100-beta binds Ca2+ sequentially at two sites to change the conformation of the protein. The first Ca2+ ion binds to site II beta, a typical Ca2+-binding site in the C-terminal region, and it does not significantly perturb the proximal environment of Tyr17 beta. After the first site is occupied, another Ca2+ ion binds to the N-terminal Ca2+-binding site, I beta, and strengthens a hydrogen bond between Tyr17 beta and a neighbouring carboxylate acceptor group, which results in a large increase in the Tyr17 beta fluorescence spectrum half-width and a positive absorption and c.d. signal between 290 and 275 nm. Ca2+ binding to the S100b.Zn2+6 complex, studied by flow-dialysis and fluorescence measurements showed that, although Zn2+ ions increase the affinity of S100b protein for Ca2+, the Ca2+-binding sequence was not changed. Tb3+ (terbium ion) binding studies on the S100b.Zn2+6 complex proved that Tb3+ antagonizes only Ca2+ binding site II beta and confirmed the sequential occupation of Ca2+-binding sites on the S100b.Zn2+6 complex.  相似文献   

13.
We purified to homogeneity rat brain S100b protein, which constitutes about 90% of the soluble S100 protein fraction. Purified rat S100b protein comigrates with bovine S100b protein in nondenaturant system electrophoresis but differs in its amino acid composition and in its electrophoretic mobility in urea-sodium dodecyl sulfate-polyacrylamide gel with bovine S100b protein. The properties of the Ca2+ and Zn2+ binding sites on rat S100b protein were investigated by flow dialysis and by fluorometric titration, and the conformation of rat S100b in its metal-free form as well as in the presence of Ca2+ or Zn2+ was studied. The results were compared with those obtained for the bovine S100b protein. In the absence of KCl, rat brain S100b protein is characterized by two high-affinity Ca2+ binding sites with a KD of 2 X 10(-5) M and four lower affinity sites with KD about 10(-4) M. The calcium binding properties of rat S100b protein differ from bovine S100b only by the number of low-affinity calcium binding sites whereas similar Ca2+-induced conformational changes were observed for both proteins. In the presence of 120 mM KCl rat brain S100b protein bound two Zn2+-ions/mol of protein with a KD of 10(-7) M and four other with lower affinity (KD approximately equal to 10(-6) M). The occupancy of the two high-affinity Zn2+ binding sites was responsible for most of the Zn2+-induced conformational changes in the rat S100b protein. No increase in the tyrosine fluorescence quantum yield after Zn2+ binding to rat S100b was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PCaP1, a hydrophilic cation-binding protein, is bound to the plasma membrane in Arabidopsis thaliana. We focused on the physicochemical properties of PCaP1 to understand its uniqueness in terms of structure and binding of metal ions. On fluorescence analysis, PCaP1 showed a signal of structural change in the presence of Cu(2+). The near-UV CD spectra showed a marked change of PCaP1 in CuCl(2) solution. The far-UV CD spectra showed the presence of alpha-helices and the intrinsically unstructured region. However, addition of Cu(2+) gave no change in the far-UV CD spectra. These results indicate that Cu(2+) induced a change in the tertiary structure without changing the secondary structure. The protein was sensitive to proteinase in the presence of Cu(2+), supporting that Cu(2+) is involved in the structural change. The PCaP1 solution was titrated with CuCl(2) and the change in the fluorescence spectrum was monitored to characterize Cu(2+)-binding properties. The obtained values of K(d) for Cu(2+) and the ligand-binding number were 10 microM and six ions per molecule, respectively. These findings indicate that PCaP1 has a high Cu(2+)-binding capacity with a relatively high affinity. PCaP1 lacks cysteine and histidine residues. A large number of glutamate residues may be involved in the Cu(2+) binding.  相似文献   

15.
We report the biochemical characterization of calhepatin, a calcium-binding protein of the S100 family, isolated from lungfish (Lepidosiren paradoxa) liver. The primary structure, determined by Edman degradation and MS/MS, shows that the sequence identities with the other members of the family are lower than those between S100 proteins from different species. Calhepatin is composed of 75 residues and has a molecular mass of 8670 Da. It is smaller than calbindin D(9k) (78 residues), the smallest S100 described so far. Sequence analysis and molecular modelling predict the two EF-hand motifs characteristic of the S100 family. Metal-binding properties were studied by a direct 45Ca2+-binding assay and by fluorescence titration. Calhepatin binds Ca2+ and Cu2+ but not Zn2+. Cu2+ binding does not change the affinity of calhepatin for Ca2+. Calhepatin undergoes a conformational change upon Ca2+ binding as shown by the increase in its intrinsic fluorescence intensity and lambda(max), the decrease in the apo-calhepatin hydrodynamic volume, and the Ca2+-dependent binding of the protein to phenyl-Superose. Like most S100 proteins, calhepatin tends to form noncovalently associated dimers. These data suggest that calhepatin is probably involved in Ca2+-signal transduction.  相似文献   

16.
In this work we have studied the interaction of the hydrophobic fluorescent probe 1,1'-bis(4-anilino-5-naphthalenesulfonate) (bis-ANS), with the native state of apo- and Ca2+-bound goat alpha-lactalbumin (GLA). In 10 mM Tris-HCl, pH 7.5, at 4 degrees C in 2 mM EGTA as well as at 37 degrees C in 2 mM Ca2+, the native protein is close to its thermal transition. Therefore, it can be expected that in both conditions the protein is equally susceptible to interaction with bis-ANS. Nevertheless, we have observed a number of interesting differences in the interaction of the dye with the apo and Ca2+ form. Native apo-GLA binds two bis-ANS molecules and in the complex with bis-ANS, the far-UV circular dichroism (CD) spectrum of apo-GLA becomes similar to that of the protein in the molten globule state. In contrast, native Ca2+-GLA binds five bis-ANS molecules and the far-UV CD spectrum of native Ca2+-GLA is conserved for the complex. In both cases, the high activation energies observed in kinetic experiments indicate that upon binding, large parts of the protein structure have to be reorganized. The reduced perturbation of the protein structure in the presence of Ca2+ can be attributed to local stabilization effects.  相似文献   

17.
Steady-state and time-resolved intrinsic fluorescence, fluorescence quenching by acrylamide, and surface testing by hydrophobic label ANS were used to study the structure of inactivated alpha-actin. The results are discussed together with that of earlier experiments on sedimentation, anisotropy of fluorescence, and CD spectrum in the near- and far-UV regions. A dramatic increase in ANS binding to inactivated actin in comparison with native and unfolded protein indicates that the inactivated actin has solvent-exposed hydrophobic clusters on the surface. It results in specific association of actin macromolecules (sedimentation constants for native and inactivated actin are 3 and 20 S, respectively) and, consequently, in irreversibility of native-inactivated actin transition. It was found that, though the fluorescence spectrum of inactivated actin is red-shifted, the efficiency of the acrylamide collision quenching is even lower than that of the intact protein. It suggests that tryptophan residues of inactivated actin are located in the inner region of protein formed by polar groups, which are highly packed. It correlates with the pronounced near-UV CD spectrum of inactivated actin. The experimentally found tryptophan fluorescence lifetimes allowed evaluation rotational correlation times on the basis of Perrin plots. It is found that oscillations of tryptophan residues in inactivated actin are restricted in comparison with native one. The inactivated actin properties were invariant with experimental conditions (ionic strength, the presence of reducing agents), the way of inactivation (Ca2+ and/or ATP removal, heating, 3-5 M urea or 1.5 M GdmCl treatment), and protein concentration (within the limits 0.005-1.0 mg/mL). The same state of actin appears on the refolding from the completely unfolded state. Thermodynamic stability, pronounced secondary structure, and the existing hydrophobic clusters, tested by ANS fluorescence and reversibility of transition inactivated-unfolded forms, allowed us to suggest that inactivated actin can be intermediate in the folding-unfolding pathway.  相似文献   

18.
4F2hc (CD98hc) is a multifunctional type II membrane glycoprotein involved in several functions as amino acid transport, cell fusion, β1-integrin-signaling and transformation. 4F2hc ectodomain has been crystallized and its three-dimensional structure determined. We have carried out a spectroscopical/structural characterization of the recombinant ectodomain in order to obtain information on its dynamic structure in solution and on its ability to form homodimers by itself in the absence of the transmembrane helix and of the potential interactions with the plasma membrane. Analytical ultracentrifugation and crosslinking experiments showed that the ectodomain is monomeric in solution. The secondary structure determined by far-UV circular dichroism (CD) spectroscopy (around 30% α-helix and 20% β-sheets, 12% antiparallel and 8% parallel) reveals a compact and thermally stable structure with a high melting temperature (57-59°C). Tryptophan residues are mainly buried and immobilized in the hydrophobic core of the protein as suggested by near-UV CD spectrum, the position of the Trp maximum fluorescence emission (323nm) and from the acrylamide quenching constant (2.6M(-1)). Urea unfolding equilibrium has been studied by far-UV CD and fluorescence spectroscopy to gain information on the folding/unfolding process of the ectodomain. The analyses suggest the existence of two intermediate states as reported for other TIM barrel-containing proteins rather than an independent unfolding of each domain [A, (βα)(8) barrel; C, antiparallel β(8) sandwich]. Folding seems to be directed by the initial formation of hydrophobic clusters within the first strands of the β-barrel of domain A followed by additional hydrophobic interactions in domain C.  相似文献   

19.
Previous work (Gandino, L., Di Renzo, M. F., Giordano, S., Bussolino, F., and Comoglio, P.M. (1990) Oncogene 5, 721-725) has shown that the tyrosine kinase activity of the receptor encoded by the MET protooncogene is negatively modulated by protein kinase C (PKC). We now show that an increase of intracellular Ca2+ has a similar inhibitory effect in vivo, via a PKC-independent mechanism. In GTL-16 cells the p145MET kinase is overexpressed and constitutively phosphorylated on tyrosine. A rapid and reversible decrease of p145MET tyrosine phosphorylation was induced by treatment with the calcium ionophores A23187 or ionomycin. Experiments performed with the ionophores in absence of extracellular calcium showed that a rise in cytoplasmic Ca2+ concentration to 450 nM (due to release from intracellular stores) resulted in a similar effect. These Ca2+ concentrations had no effect on p145MET autophosphorylation in an in vitro kinase assay. This suggests that the effect of Ca2+ on p145MET tyrosine phosphorylation is not direct but may be mediated by Ca(2+)-activated proteins(s). Involvement of Ca(2+)-dependent tyrosine phosphatases was ruled out by experiments carried out in presence of Na2VO4. In vivo labeling with [32P]orthophosphate showed that the rise of intracellular Ca2+ induces serine phosphorylation of p145MET on a specific phosphopeptide. This suggests that Ca2+ negatively modulates p145MET kinase through the phosphorylation of a critical serine residue by a Ca(2+)-activated serine kinase distinct from PKC.  相似文献   

20.
S100A5 is a novel member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain. Here we characterized the human recombinant S100A5, especially its interaction with Ca(2+), Zn(2+), and Cu(2+). Flow dialysis revealed that the homodimeric S100A5 binds four Ca(2+) ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn(2+) ions and four Cu(2+) ions per dimer. Cu(2+) binding strongly impairs the binding of Ca(2+); however, none of these ions change the alpha-helical-rich secondary structure. After covalent labeling of an exposed thiol with 2-(4'-(iodoacetamide)anilino)-naphthalene-6-sulfonic acid, binding of Cu(2+), but not of Ca(2+) or Zn(2+), strongly decreased its fluorescence. In light of the three-dimensional structure of S100 proteins, our data suggest that in each subunit the single Zn(2+) site is located at the opposite side of the EF-hands. The two Cu(2+)-binding sites likely share ligands of the EF-hands. The potential role of S100A5 in copper homeostasis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号