首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought‐tolerant biomes in the tropics. These features are broadly consistent with pollen‐based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought‐tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low‐latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial‐interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.  相似文献   

2.
The potential for feedbacks between terrestrial vegetation, climate, and the atmospheric CO2 partial pressure have been addressed by modelling. Previous research has established that under global warming and CO2 enrichment, the stomatal conductance of vegetation tends to decrease, causing a warming effect on top of the driving change in greenhouse warming. At the global scale, this positive feedback is ultimately changed to a negative feedback through changes in vegetation structure. In spatial terms this structural feedback has a variable geographical pattern in terms of magnitude and sign. At high latitudes, increases in vegetation leaf area index (LAI) and vegetation height cause a positive feedback, and warming through reductions in the winter snow-cover albedo. At lower latitudes when vegetation becomes more sparse with warming, the higher albedo of the underlying soil leads to cooling. However, the largest area effects are of negative feedbacks caused by increased evaporative cooling with increasing LAI. These effects do not include feedbacks on the atmospheric CO2 concentration, through changes in the carbon cycle of the vegetation. Modelling experiments, with biogeochemical, physiological and structural feedbacks on atmospheric CO2, but with no changes in precipitation, ocean activity or sea ice formation, have shown that a consequence of the CO2 fertilization effect on vegetation will be a reduction of atmospheric CO2 concentration, in the order of 12% by the year 2100 and a reduced global warming by 0.7°C, in a total greenhouse warming of 3.9°C.  相似文献   

3.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

4.
Vegetation dynamics plays a critical role in causing the decadal variability of precipitation over the Sahel region of West Africa. However, the potential impact of changes in CO2 concentration on vegetation dynamics and precipitation variability of this region has not been addressed by previous studies. In this paper, we explore the role of CO2 concentration in the regional climate system of West Africa using a zonally symmetric, synchronously coupled biosphere‐atmosphere model. We first document the response of precipitation and vegetation to incremental changes of CO2 concentration; the impact of CO2 concentration on the variability of the regional biosphere‐atmosphere system is then addressed using the second half of the twentieth century as an example. An increase of CO2 concentration causes the regional biosphere‐atmosphere system to become wetter and greener, with the radiative effect of CO2 and improved plant‐water relation dominant in the Sahelian grassland region and the direct enhancement of leaf carbon assimilation dominant in the tree‐covered region to the south. Driven by the observed sea surface temperature (SST) of the tropical Atlantic Ocean during the period 1950–97 and with CO2 concentration prescribed at a pre‐industrial level 300ppmv, the model simulates a persistent Sahel drought during the period of 1960s?1990s. The simulated drought takes place in the form of a transition of the coupled biosphere‐atmosphere system from a wet/green regime in the 1950s to a dry/barren regime after the 1960s. This climate transition is triggered by SST forcing and materialized through vegetation‐climate interactions. The same SST forcing does not produce such a persistent drought when a constant modern CO2 concentration of 350ppmv is specified, indicating that the biosphere‐atmosphere system at higher CO2 level is more resilient to drought‐inducing external forcings. This finding suggests that the regional climate in Sahel, which tends to alternate between dry and wet spells, may experience longer (or more frequent) wet episodes and shorter (or less frequent) dry episodes in the future than in the past. Our study has significant implications regarding the impact of climate change on regional socio‐economic development.  相似文献   

5.
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow‐moving factors such as shifts in vegetation community composition. Long‐term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long‐term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales.  相似文献   

6.
In order to investigate the hypothesis that the Earth's climate and vegetation patterns may have more than one basic state, we use the fully coupled GENESIS-IBIS model. GENESIS is an atmospheric general circulation model. IBIS is a dynamic global vegetation model that integrates biophysical, physiological, and ecological processes. GENESIS and IBIS are coupled by way of a common land surface interface to allow for the full and transient interaction between changes in the vegetation structure and changes in the general circulation of the atmosphere. We examine two modern climate simulations of the coupled model initialized with two different initial conditions. In one case, we initialize the model vegetation cover with the modern observed distribution of vegetation. In the other case, we initialize the vegetation cover with evergreen boreal forests extending to the Arctic coast, replacing high-latitude tundra. We interpret the coupled model's behaviour using a conceptual model for multistability and demonstrate that in both simulations the climate-vegetation system converges to the same equilibrium state. In the present climate, feedbacks between land, ocean, sea ice, and the atmosphere do not result in the warming required to support an expanded boreal forest.  相似文献   

7.
Global climate change is the major and most urgent global environmental issue. Australia is already experiencing climate change as evidenced by higher temperatures and more frequent and severe droughts. These impacts are compounded by increasing land use pressures on natural resources and native ecosystems. This paper provides a synthesis of the interactions, feedbacks and risks of natural climate variability, climate change and land use/land cover change (LUCC) impacting on the Australian continent and how they vary regionally. We review evidence of climate change and underlying processes resulting from interactions between global warming caused by increased concentration of atmospheric greenhouse gases and modification of the land surface. The consequences of ignoring the effect of LUCC on current and future droughts in Australia could have catastrophic consequences for the nation's environment, economy and communities. We highlight the need for more integrated, long-term and adaptive policies and regional natural resource management strategies that restore the beneficial feedbacks between native vegetation cover and local-regional climate, to help ameliorate the impact of global warming.  相似文献   

8.
Royer DL  Pagani M  Beerling DJ 《Geobiology》2012,10(4):298-310
Earth system climate sensitivity (ESS) is the long‐term (>103 year) response of global surface temperature to doubled CO2 that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 103 year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo‐reconstructions of CO2 and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs.  相似文献   

9.
The terrestrial carbon cycle plays a critical role in determining levels of atmospheric CO2 that result from anthropogenic carbon emissions. Elevated atmospheric CO2 is thought to stimulate terrestrial carbon uptake, through the process of CO2 fertilization of vegetation productivity. This negative carbon cycle feedback results in reduced atmospheric CO2 growth, and has likely accounted for a substantial portion of the historical terrestrial carbon sink. However, the future strength of CO2 fertilization in response to continued carbon emissions and atmospheric CO2 rise is highly uncertain. In this paper, the ramifications of CO2 fertilization in simulations of future climate change are explored, using an intermediate complexity coupled climate–carbon model. It is shown that the absence of future CO2 fertilization results in substantially higher future CO2 levels in the atmosphere, as this removes the dominant contributor to future terrestrial carbon uptake in the model. As a result, climate changes are larger, though the radiative effect of higher CO2 on surface temperatures in the model is offset by about 30% due to reduced positive dynamic vegetation feedbacks; that is, the removal of CO2 fertilization results in less vegetation expansion in the model, which would otherwise constitute an important positive surface albedo‐temperature feedback. However, the effect of larger climate changes has other important implications for the carbon cycle – notably to further weaken remaining carbon sinks in the model. As a result, positive climate–carbon cycle feedbacks are larger when CO2 fertilization is absent. This creates an interesting synergism of terrestrial carbon cycle feedbacks, whereby positive (climate–carbon cycle) feedbacks are amplified when a negative (CO2 fertilization) feedback is removed.  相似文献   

10.
Potentially complex biosphere responses to transient global warming   总被引:3,自引:0,他引:3  
Feedback interactions between terrestrial vegetation and climate could alter predictions of the responses of both systems to a doubling of atmospheric CO2. Most previous analyses of biosphere responses to global warming have used output from equilibrium simulations of current and future climate, as compared to more recently available transient GCM simulations. We compared the vegetation responses to these two different classes of GCM simulation (equilibrium and transient) using an equilibrium vegetation distribution model, MAPSS. Average climatologies were extracted from the transient GCM simulations for current and doubled (2×) CO2 concentrations (taken to be 2070–2099) for use by the equilibrium vegetation model. However, the 2 × CO2 climates extracted from the transient GCM simulations were not in equilibrium, having attained only about 65% of their eventual 2 × CO2 equilibrium temperature change. Most of the differences in global vegetation response appeared to be related to a very different simulated change in the pole to tropic temperature gradient. Also, the transient scenarios produced much larger increases of precipitation in temperate latitudes, commensurate with a minimum in the latitudinal temperature change. Thus, the (equilibrium) global vegetation response, under the transient scenarios, tends more to a greening than a decline in vegetation density, as often previously simulated. It may be that much of the world could become greener during the early phases of global warming, only to reverse in later, more equilibrial stages. However, whether or not the world's vegetation experiences large drought-induced declines or perhaps large vegetation expansions in early stages could be determined by the degree to which elevated CO2 will actually benefit natural vegetation, an issue still under debate. There may occur oscillations, perhaps on long timescales, between greener and drier phases, due to different frequency responses of the coupled ocean–atmosphere–biosphere interactions. Such oscillations would likely, of themselves, impart further reverberations to the coupled Earth System.  相似文献   

11.
Endemic species and ecosystem sensitivity to climate change in Namibia   总被引:1,自引:0,他引:1  
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.  相似文献   

12.
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3‐year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (?23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (?27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (?12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long‐term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation–atmosphere interactions.  相似文献   

13.
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data‐based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree‐ring reconstructions of NPP and raw ring‐width series at six temperate forest sites. These model‐data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree‐ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm‐growing season temperatures, while tree‐ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2, but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.  相似文献   

14.
We present a novel approach to estimating the transpiration flux and gross primary productivity (GPP) from Normalized Difference Vegetation Index, leaf functional types, and readily available climate data. We use this approach to explore the impact of variations in the concentration of carbon dioxide in the atmosphere ([CO2]) and consequent predicted changes in vegetation cover, on the transpiration flux and GPP. There was a near 1 : 1 relationship between GPP estimated with this transpiration flux approach and that estimated using a radiation‐use efficiency (RUE) approach. Model estimates are presented for the Australian continent under three vegetation–[CO2] scenarios: the present vegetation and hypothetical ‘natural’ vegetation cover with atmospheric CO2 concentration ([CO2]) of 350 μmol mol?1 (pveg350 and nveg350), and for the ‘natural’ vegetation with [CO2] 280 μmol mol?1 (nveg280). Estimated continental GPP is 6.5, 6.3 and 4.3 Gt C yr?1 for pveg350, nveg350 and nveg280, respectively. The corresponding transpiration fluxes are 232, 224 and 190 mm H2O yr?1. The contribution of the raingreen and evergreen components of the canopy to these fluxes are also estimated.  相似文献   

15.
Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global carbon (C) cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, air warming, and changing precipitation in a constructed old‐field grassland in eastern Tennessee, USA. Model ecosystems of seven old‐field species were established in open‐top chambers and treated with factorial combinations of ambient or elevated (+300 ppm) CO2 concentration, ambient or elevated (+3 °C) air temperature, and high or low soil moisture content. During the 19‐month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in the other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of time period. Treatment‐induced changes in soil temperature and moisture together explained 49%, 44%, and 56% of the seasonal variations of soil respiration responses to elevated CO2, air warming, and changing precipitation, respectively. Additional indirect effects of seasonal dynamics and responses of plant growth on C substrate supply were indicated. Given the importance of indirect effects of the forcing factors and plant community dynamics on soil temperature, moisture, and C substrate, soil respiration response to climatic warming should not be represented in models as a simple temperature response function, and a more mechanistic representation including vegetation dynamics and substrate supply is needed.  相似文献   

16.
The snow‐masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large‐scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow‐albedo feedback is controlled largely by the contrast between snow‐covered and snow‐free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow‐covered and snow‐free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow‐albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions.  相似文献   

17.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

18.
The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO2, and few studies have considered how and to what extent climate change and CO2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP‐DGVM coupled with CLM3 and CLM4‐CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO2 concentration. In the temperature sensitivity tests, warming reduced the global area‐averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (ΔFtree; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether ΔFtree was positive or negative, while the tree fractional coverage (Ftree; %) played a decisive role in the amplitude of ΔFtree around the globe, and the dependence was more remarkable in IAP‐DGVM. In cases with precipitation change, Ftree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < Ftree < 60%) for IAP‐DGVM and in semiarid and arid regions for CLM4‐CNDV. Moreover, ΔFtree had a stronger dependence on Ftree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO2 concentration.  相似文献   

19.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

20.
During the past century, annual mean temperature has increased by 0.75°C and precipitation has shown marked variation throughout the Mediterranean basin. These historical climate changes may have had significant, but presently undefined, impacts on the productivity and structure of sclerophyllous shrubland, an important vegetation type in the region. We used a vegetation model for this functional type to examine climate change impacts, and their interaction with the concurrent historical rise in atmospheric CO2. Using only climate and soil texture as data inputs, model predictions showed good agreement with observations of seasonal and regional variation in leaf and canopy physiology, net primary productivity (NPP), leaf area index (LAI) and soil water. Model simulations for shrubland sites indicated that potential NPP has risen by 25% and LAI by 7% during the past century, although the absolute increase in LAI was small. Sensitivity analysis suggested that the increase in atmospheric CO2 since 1900 was the primary cause of these changes, and that simulated climate change alone had negative impacts on both NPP and LAI. Effects of rising CO2 were mediated by significant increases in the efficiency of water‐use in NPP throughout the region, as a consequence of the direct effect of CO2 on leaf gas exchange. This increase in efficiency compensated for limitation of NPP by drought, except in areas where drought was most severe. However, while water was used more efficiently, total canopy water loss rose slightly or remained unaffected in model simulations, because increases in LAI with CO2 counteracted the effects of reduced stomatal conductance on transpiration. Model simulations for the Mediterranean region indicate that the recent rise in atmospheric CO2 may already have had significant impacts on productivity, structure and water relations of sclerophyllous shrub vegetation, which tended to offset the detrimental effects of climate change in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号