首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many complexes formed by serine proteinases and their inhibitors, the hydroxyl group provided by water molecule or by the inhibitor Ser residue is located close to the inhibitor P1-P1' reactive site. In order to investigate the role of this group, we synthesized analogues of trypsin inhibitor SFTI-1 isolated from the seeds of sunflower modified in P1 by alpha-hydroxymethylserine (HmSer) and both enantiomers of alpha-hydroxymethylvaline (HmVal). All the synthesized analogues inhibited bovine beta-trypsin and human leukocyte elastase. SFTI-1 analogues with HmVal and HmSer appear to be potent inhibitors of bovine beta-trypsin, whereas [Val5]SFTI-1 is practically inactive. Also trypsin inhibitory activity of [Ser5]SFTI-1 is significantly lower. Since the electrostatic interaction between protonated epsilon-NH2 group of the inhibitor P1 position and beta-carboxylate of trypsin Asp189 is the main driving force for interaction of both molecules, the results obtained are very interesting. We believe that these SFTI-1 analogues belong to a novel class of serine proteinase inhibitors.  相似文献   

2.
The semisynthesis of homologues of aprotinin (BPTI) is described. The P1 amino acid residue of these homologues was substituted by other amino acids using peptide synthetic methods. The reactive-site-modified inhibitor (with the Lys15-Ala16 peptide bond hydrolyzed) was used as starting material. All carboxyl groups of the modified inhibitor were esterified with methanol, then the Lys15 methyl ester group was hydrolyzed selectively. Afterwards, Lys15 itself was split off. A new amino acid residue was incorporated by using water-soluble carbodiimide combined with an acylation catalyst. tert-Butyl-ester-protected amino acids were used for reinsertion. The method was tested by re-insertion of Lys15 to reconstitute the original inhibitor. Thirteen BPTI homologues with coded (Lys, Glu, Gly, Ala, Val, Ile, Leu) or uncoded amino acids (Abu, Ape, aIle, Ahx, tLeu, Neo) in position 15 were synthesized and the specificity of the inhibitors investigated. Amongst these, [Val15]BPTI was shown to be an excellent inhibitor for human polymorphonuclear leukocyte elastase having a complex dissociation constant of 0.11 nM. This inhibitor showed no detectable affinity to bovine pancreatic trypsin.  相似文献   

3.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

4.
The S2 subsite specificity of the plant protease papain has been altered to resemble that of mammalian cathepsin B by site-directed mutagenesis. On the basis of amino acid sequence alignments for papain and cathepsin B, a double mutant (Val133Ala/Ser205Glu) was produced where Val133 and Ser205 are replaced by Ala and Glu, respectively, as well as a triple mutant (Val133Ala/Val157Gly/Ser205Glu), where Val157 is also replaced by Gly. Three synthetic substrates were used for the kinetic characterization of the mutants, as well as wild-type papain and cathepsin B: CBZ-Phe-Arg-MCA, CBZ-Arg-Arg-MCA, and CBZ-Cit-Arg-MCA. The ratio of kcat/KM obtained by using CBZ-Phe-Arg-MCA as substrate over that obtained with CBZ-Arg-Arg-MCA is 8.0 for the Val133Ala/Ser205Glu variant, while the equivalent values for wild-type papain and cathepsin B are 904 and 3.6, respectively. This change in specificity has been achieved by replacing only two amino acids out of a total of 212 in papain and with little loss in overall enzyme activity. However, further replacement of Val157 by Gly as in Val133Ala/Val157Gly/Ser205Glu causes an important decrease in activity, although the enzyme still displays a cathepsin B like substrate specificity. In addition, the pH dependence of activity for the Val133Ala/Ser205Glu variant compares well with that of cathepsin B. In particular, the activity toward CBZ-Arg-Arg-MCA is modulated by a group with a pKa of 5.51, a behavior that is also encountered in the case of cathepsin B but is absent with papain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

6.
In the association of serine proteinases with their cognate substrates and inhibitors an important interaction is the fitting of the P1 side chain of the substrate or inhibitor into a preformed cavity of the enzyme called the S1 pocket. In turkey ovomucoid third domain, which is a canonical protein proteinase inhibitor, the P1 residue is Leu18. Here we report the values of equilibrium constants, Ka, for turkey ovomucoid third domain and 13 additional Leu18X variants with six serine proteinases: bovine alpha chymotrypsin A, porcine pancreatic elastase, subtilisin Carlsberg, Streptomyces griseus proteinases A and B, and human leukocyte elastase. Eight of the Xs are coded amino acids: Ala, Ser, Val, Met, Gln, Glu, Lys, and Phe, and five are noncoded: Abu, Ape, Ahx, Ahp, and Hse. They were chosen to simplify the interamino acid comparisons. In the homologous series of straight-chain side chains Ala, Abu, Ape, Ahx, Ahp, free energy of binding decreases monotonically with the side-chain length for chymotrypsin with large binding pocket, but even for this enzyme shows curvature. For the two S. griseus enzymes a minimum appears to be reached at Ahp. A minimum is clearly evident for the two elastases, where increasing the side-chain length from Ahx to Ahp greatly weakens binding, but much more so for the apparently more rigid pancreatic enzyme than for the more flexible leukocyte enzyme. beta-Branching (Ape/Val) is very deleterious for five of the six enzymes; it is only slightly deleterious for the more flexible human leukocyte elastase. The effect of gamma-branching (Ahx/Leu), of introduction of heteroatoms (Abu/Ser), (Ape/Hse), and (Ahx/Met), and of introduction of charge (Gln/Glu) and (Ahp/Lys) are tabulated and discussed. An important component of the free energy of interaction is the distortion of the binding pocket by bulky or branched side chains. Most of the variants studied were obtained by enzymatic semisynthesis. X18 variants of the 6-18 peptide GlyNH2 were synthesized and combined with natural reduced peptide 19-56. Disulfide bridges were formed. The GlyNH2 was removed and the reactive-site peptide bond X18-Glu19 was synthesized by complex formation with proteinase K. The resultant complexes were dissociated by sudden pH drop. This kinetically controlled dissociation afforded virgin, reactive-site-intact inhibitor variants.  相似文献   

7.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

8.
We showed previously that substitution of the first residue of the influenza hemagglutinin (HA) fusion peptide Gly1 with Glu abolishes fusion activity. In the present study we asked whether this striking phenotype was due to the charge or side-chain volume of the substituted Glu. To do this we generated and characterized six mutants with substitutions at position 1: Gly1 to Ala, Ser, Val, Glu, Gln, or Lys. We found the following. All mutants were expressed at the cell surface, could be cleaved from the precursor (HA0) to the fusion permissive form (HA1-S-S-HA2), bound antibodies against the major antigenic site, bound red blood cells, and changed conformation at low pH. Only Gly, Ala, and Ser supported lipid mixing during fusion with red blood cells. Only Gly and Ala supported content mixing. Ser HA, therefore, displayed a hemifusion phenotype. The hemifusion phenotype of Ser HA was confirmed by electrophysiological studies. Our findings indicate that the first residue of the HA fusion peptide must be small (e.g., Gly, Ala, or Ser) to promote lipid mixing and must be small and apolar (e.g., Gly or Ala) to support both lipid and content mixing. The finding that Val HA displays no fusion activity underscores the idea that hydrophobicity is not the sole factor dictating fusion peptide function. The surprising finding that Ser HA displays hemifusion suggests that the HA ectodomain functions not only in the first stage of fusion, lipid mixing, but also, either directly or indirectly, in the second stage of fusion, content mixing.  相似文献   

9.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

10.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

11.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

12.
The Cucurbita maxima trypsin inhibitor CMTI-III molecule was used as a vehicle to design and synthesize a series of trypsin chromogenic substrates modified in position P1: Ac-Ala-Val-Abu-Pro-X-pNA, where X = Orn, Lys, Arg, Har, Arg(NO(2)), Cit, Hci, Phe(p-CN), Phe(p-NH(2)); pNA = p-nitroanilide. The most active compounds (as determined by specificity constant k(cat)/K(m)) were peptides with the Arg and Lys residues in the position discussed. Changes in the length and the decrease of the positive charge of the amino acid residue side chain in position P(1) resulted in the decrease or loss of the affinity towards bovine beta-trypsin. Among peptides containing amino acid residues with uncharged side chains in position P1, only one with p-cyano-l-Phe revealed activity. These results correspond well with trypsin inhibitory activity of CMTI-III analogues modified in the equivalent position, indicating the same type of interaction between position P1 of the substrate or inhibitor and S1 site specificity of trypsin.  相似文献   

13.
Crystal structures of P1 Gly, Val, Leu and Phe bovine pancreatic trypsin inhibitor (BPTI) variants in complex with two serine proteinases, bovine trypsin and chymotrypsin, have been determined. The association constants for the four mutants with the two enzymes show that the enlargement of the volume of the P1 residue is accompanied by an increase of the binding energy, which is more pronounced for bovine chymotrypsin. Since the conformation of the P1 side-chains in the two S1 pockets is very similar, we suggest that the difference in DeltaG values between the enzymes must arise from the more polar environment of the S1 site of trypsin. This results mainly from the substitutions of Met192 and Ser189 observed in chymotrypsin with Gln192 and Asp189 present in trypsin. The more polar interior of the S1 site of trypsin is reflected by a much higher order of the solvent network in the empty pocket of the enzyme, as is observed in the complexes of the two enzymes with the P1 Gly BPTI variant. The more optimal binding of the large hydrophobic P1 residues by chymotrypsin is also reflected by shrinkage of the S1 pocket upon the accommodation of the cognate residues of this enzyme. Conversely, the S1 pocket of trypsin expands upon binding of such side-chains, possibly to avoid interaction with the polar residues of the walls. Further differentiation between the two enzymes is achieved by small differences in the shape of the S1 sites, resulting in an unequal steric hindrance of some of the side-chains, as observed for the gamma-branched P1 Leu variant of BPTI, which is much more favored by bovine chymotrypsin than trypsin. Analysis of the discrimination of beta-branched residues by trypsin and chymotrypsin is based on the complexes with the P1 Val BPTI variant. Steric repulsion of the P1 Val residue by the walls of the S1 pocket of both enzymes prevents the P1 Val side-chain from adopting the most optimal chi1 value.  相似文献   

14.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

15.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

16.
The role of the S(1) subsite in trypsin, chymotrypsin and plasmin has been examined by measuring the association with seven different mutants of bovine pancreatic trypsin inhibitor (BPTI); the mutants contain Gly, Ala, Ser, Val, Leu, Arg, and Trp at the P(1) position of the reactive site. The effects of substitutions at the P(1) position on the association constants are very large, comprising seven orders of magnitude for trypsin and plasmin, and over five orders for chymotrypsin. All mutants showed a decrease of the association constant to the three proteinases in the same order: Ala>Gly>Ser>Arg>Val>Leu>Trp. Calorimetric and circular dichroism methods showed that none of the P1 substitutions, except the P1-Val mutant, lead to destabilisation of the binding loop conformation. The X-ray structure of the complex formed between bovine beta-trypsin and P(1)-Leu BPTI showed that the P(1)-Leu sterically conflicts with the side-chain of P(3)-Ile, which thereby is forced to rotate approximately 90 degrees. Ile18 (P(3)) in its new orientation, in turn interacts with the Tyr39 side-chain of trypsin. Introduction of a large side-chain at the P1' position apparently leads to a cascade of small alterations of the trypsin-BPTI interface that seem to destabilise the complex by it adopting a less optimized packing and by tilting the BPTI molecule up to 15 degrees compared to the native trypsin-BPTI complex.  相似文献   

17.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

18.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

19.
Chymases are mast cell serine proteases with chymotrypsin-like primary substrate specificity. Amino acid sequence comparisons of alpha-chymases from different species indicated that certain rodent alpha-chymases have a restricted S1 pocket that could only accommodate small amino acids, i.e. they may, despite being classified as chymases, in fact display elastase-like substrate specificity. To explore this possibility, the alpha-chymase, rat mast cell protease 5 (rMCP-5), was produced as a proenzyme with a His6 purification tag and an enterokinase-susceptible peptide replacing the natural propeptide. After removal of the purification tag/enterokinase site by enterokinase digestion, rMCP-5 bound the serine-protease-specific inhibitor diisopropyl fluorophosphate, showing that rMCP-5 was catalytically active. The primary specificity was investigated with chromogenic substrates of the general sequence succinyl-Ala-Ala-Pro-X-p-nitroanilide, where the X was Ile, Val, Ala, Phe or Leu. The activity was highest toward substrates with Val or Ala in the P1 position, whereas low activity toward the peptide with a P1 Phe was observed, indicating that the substrate specificity of rMCP-5 indeed is elastase-like. The extended substrate specificity was examined utilizing a phage-displayed random nonapeptide library. The preferred cleavage sequence was resolved as P4-(Gly/Pro/Val), P3-(Leu/Val/Glu), P2-(Leu/Val/Thr), P1-(Val/Ala/Ile), P1'-(Xaa), and P2'-(Glu/Leu/Asp). Hence, the extended substrate specificity is similar to human chymase in most positions except for the P1 position. We conclude that the rat alpha-chymase has converted to elastase-like substrate specificity, perhaps associated with an adoption of new biological targets, separate from those of human alpha-chymase.  相似文献   

20.
A tetrapeptide combinatorial library, considered as chromogenic substrates of bovine beta-trypsin, was synthesized by the solid phase method. The peptides contain an analog of p-nitroanilide, obtained by attaching 5-amino-2-nitrobenzoic acid (Anb(5,2)) to the C-termini. Deconvolution of the peptide library, performed in solution using an iterative method, yielded four efficient trypsin substrates. The most active one, Phe-Val-Pro-Arg-Anb(5,2)-NH(2), appeared to be 125-fold more active than Bz-D,L-Arg-pNA (BAPNA) used as a reference compound. The reported method of designing trypsin chromogenic substrate libraries is straightforward. Such p-nitroanilides may be useful for the investigation of any protease substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号