首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depletion of intracellular K+ has been reported to result in an arrest of the formation of coated pits in human fibroblasts (Larkin, J.M., M.S. Brown, J.L. Goldstein, and R.G.W. Anderson, 1983, Cell, 33:273-285). We have studied the effects of K+ depletion on the cytotoxicities of ricin, Pseudomonas exotoxin A, and diphtheria toxin in Chinese hamster ovary (CHO) cells. The cytotoxicities of ricin and Pseudomonas toxin were enhanced in K+-depleted CHO cells whereas the cytotoxicity of diphtheria toxin was reduced by K+ depletion. The effects of NH4Cl on the cytotoxicities of ricin, Pseudomonas toxin, and diphtheria toxin were found to be similar to those of K+ depletion, and there were no additive or synergistic effects on ricin cytotoxicity by NH4Cl in K+-depleted medium. The enhancement of ricin cytotoxicity by K+ depletion could be completely reversed by the addition of K+, Rb+, and partially by the addition of Cs+, before the ricin treatment, whereas Li+ was ineffective. These protective effects of K+ or Rb+ requires a functional Na+/K+ ATPase. CHO cells grown in K+-depleted media were found to contain 6.3-fold increase in intracellular Na+ level, concomitant with a 10-fold reduction in intracellular K+ level. The enhanced cytotoxicity of ricin in K+-free medium and the increased uptake of Na+ could be abolished by amiloride or amiloride analogues, which are known to be potent inhibitors of the Na+/H+ antiport system. Our results suggest that a depletion of intracellular K+ results in an influx of Na+, which is accompanied by the extrusion of H+. Consequently, there is an alkalinization of the cytosol and the ricin-containing endosomes. As a result, ricin is more efficiently released from the endosomes in-K+-depleted cells. Results from the studies of the binding, internalization, and degradation of 125I-ricin, and the kinetics of inhibition of protein synthesis by ricin in K+-depleted cells are consistent with this working hypothesis.  相似文献   

2.
Diphtheria toxin is believed to enter sensitive mammalian cells via receptor-mediated endocytosis from clathrin-coated pits, while ricin can enter via both clathrin-dependent and clathrin-independent endocytosis. The present study has confirmed this by determining the toxin sensitivity of COS-7y cells which were transiently overexpressing atransdominant negative mutant of dynamin, a GTPase required for the budding of clathrin-coated vesicles from the plasma membrane. Cells overexpressing wild-type dynamin showed normal receptor-mediated endocytosis of transferrin and remained sensitive to both diphtheria toxin and ricin. Cells overexpressing a mutant dynamin defective in GTP binding and hydrolysis were unable to endocytose transferrin and were protected against diphtheria toxin, but they remained completely sensitive to ricin intoxication. Treating nontransfected cells or cells overexpressing mutant dynamin with nystatin caused a redistribution of the caveolae membrane marker protein VIP21-caveolin from the cell surface to intracellular locations, but did not affect their sensitivity to ricin. The redistribution of caveolin seen after nystatin treatment may reflect the disappearance of caveolae. If this is the case, caveolae are not responsible for the endocytosis of ricin. An alternative clathrin-independent route may operate for ricin, since cellular uptake, intracellular transport, and translocation into the cytosol remain unaffected when clathrin-dependent endocytosis is effectively blocked.  相似文献   

3.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

4.
We have prepared a conjugate (Ri-Au) of the toxic plant protein ricin and colloidal gold (particle size 5 nm) and used it for internalization studies in monolayer cultures of Vero cells. The Ri-Au conjugate was very stable, with only little release of ricin ([125I]Ri) from the gold particles within a pH range of 4.5-8.0. Within 2 h at 37 degrees C, only very little intracellular degradation of the ricin preparation ([125I]Ri-Au) occurred. The cells bound the same proportion of native ricin ([125I]Ri) and Ri-Au from the medium, and the kinetics of toxicity (decrease in cellular incorporation of [3H]leucine) of [125I]Ri and [125I]Ri-Au were also comparable. At 4 degrees C, the cell-surface binding of Ri-Au was continuous and distinct, as revealed by electron microscopy. This binding was specific, since almost no Ri-Au surface binding occurred at 4 degrees C in the presence of 0.1 M lactose or 1 mg/ml native (unlabelled) ricin. Within the first 30 min of warming prelabelled cells to 37 degrees C, the amount of surface-associated Ri-Au decreased considerably (from 150 to 60 gold particles per micron cell surface in 40 nm sections). Coated pits and vesicles were involved in the internalization of Ri-Au, and within 5-30 min at 37 degrees C Ri-Au had been delivered to vacuolar and tubulo-vesicular portions of the endosomal system, and later also to lysosomes. Analysis of very thin (ca 20 nm) serial sections revealed that most of the tubulo-vesicular elements were separate structures not connected to the membrane of the vacuolar portion. Data here presented indicate that our ricin conjugate, like many "physiological' ligands and viruses, is internalized by receptor-mediated endocytosis via the coated pit-endosomal pathway.  相似文献   

5.
Cytotoxic necrotizing factor 1 (CNF1), a protein produced by pathogenic strains of Escherichia coli, activates the p21 Rho-GTP-binding protein, inducing a profound reorganization of the actin cytoskeleton. CNF1 binds to its cell surface receptor on HEp-2 cells with high affinity (K(d) = 20 pM). In HEp-2 cells the action of CNF1 is not blocked in the presence of filipin, a drug described to reduce cholera toxin internalization by the caveolae-like mechanism. Moreover, HEp-2 cells, which express a dominant negative form of proteins that impair the formation of clathrin coated-vesicles and internalization of transferrin (Eps15, dynamin or intersectin-Src homology 3), are still sensitive to CNF1. In this respect, the endocytosis of CNF1 is similar to the plant toxin ricin. However, unlike ricin toxin, CNF1 does not cross the Golgi apparatus and requires an acidic cell compartment to transfer its enzymatic activity into the cytosol in a manner similar to that required by diphtheria toxin. As shown for diphtheria toxin, the pH-dependent membrane translocation step of CNF1 could be mimicked at the level of the plasma membrane by a brief exposure to a pH of 相似文献   

6.
Formation of coated vesicles from coated pits in broken A431 cells   总被引:22,自引:16,他引:6       下载免费PDF全文
Biochemical and morphological techniques were used to demonstrate the early steps in the endocytosis of transferrin in broken A431 cells. After binding 125I-transferrin, the cells were broken by scraping and then warmed. 125I-transferrin became inaccessible to exogenous anti- transferrin antibody providing a measure of the internalization process. Parallel morphological experiments using transferrin coupled to horseradish peroxidase confirmed internalization in broken cells. The process was characterized and compared with endocytosis in intact cells and showed many similar features. The system was used to show that both the appearance of new coated pits and the scission of coated pits to form coated vesicles were dependent on the addition of cytosol and ATP whereas invagination of pits was dependent on neither.  相似文献   

7.
Chinese hamster ovary mutants simultaneously resistant to ricin and Pseudomonas toxin have been isolated. Two mutant cell lines (4-10 and 11-2) were found to retain normal levels of binding of both ricin and Pseudomonas toxin. They were defective in the internalization of [125I]ricin into the mutant cells, as measured by both a biochemical assay for ricin internalization and electron microscopic autoradiographic studies. Although pretreatment of Chinese hamster ovary cells with a Na+/K+ ionophore, nigericin, resulted in an enhancement of the cytotoxicities of ricin and Pseudomonas toxin in the wild-type Chinese hamster ovary cells, preculture of the mutant cells did not alter the susceptibility of the mutant cells to either toxin. These results provide further evidence that there is a common step in the internalization process for ricin and Pseudomonas toxin.  相似文献   

8.
Potassium depletion after a brief exposure of the cells to hypotonic medium was used to inhibit endocytosis from coated pits in Hep 2 cells. After such treatment the endocytic uptake of transferrin was arrested, and electron microscopy revealed that virtually no coated pits were present at the cell surface, while smooth (uncoated) pits were abundant. Under the same conditions the cells were strongly protected against poliovirus, while the cytopathogenic effect of human rhinovirus type 2, HRV 2, was increased. The cytopathogenic effect of encephalomyocarditis (EMC) virus was only slightly affected. Potassium depletion without hypotonic shock reduced the endocytic uptake of transferrin 2-3-fold and the number of coated pits at the cell surface about 3-fold. Furthermore, the cells were not protected against poliovirus after such treatment. The data indicate that the productive uptake of poliovirus occurs by receptor-mediated endocytosis from coated pits, while the productive uptake of the other two picornaviruses may occur by another endocytic pathway. In order to efficiently arrest endocytosis from coated pits in these cells, hypotonic shock seems to be a critical component of the potassium depletion protocol.  相似文献   

9.
Cytochalasin D was found to reduce the endocytosis of ricin and the fluid phase markers [14C]sucrose and Lucifer Yellow in Vero cells without reducing the uptake of transferrin. The number of coated pits at the plasma membrane was not affected by the treatment. Cytochalasin D also reduced the endocytosis of ricin in cells where uptake of transferrin from coated pits was blocked by low cytosolic pH. Colchicine had a similar effect as cytochalasin D. Both drugs inhibited the exocytosis of ricin from the cells, and they reduced the rate by which ricin intoxicated the cells. Cytochalasin D had essentially no effect on the ability of the cells to bind transferrin, whereas colchicine reduced the binding to some extent. Epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) increased the endocytic uptake of ricin in A431 cells both under normal culture conditions and when the coated pit/coated vesicle pathway was blocked by acidification of the cytosol. In contrast, EGF and TPA had no stimulatory effect on the uptake of transferrin at normal cytoplasmic pH, and they did not abolish the ability of low cytoplasmic pH to inhibit endocytic uptake of transferrin. The results indicate that cytochalasin D and colchicine selectively inhibit endocytic uptake from non-clathrin-coated areas of the cell membrane whereas EGF and TPA stimulate it. The data support the view that there are different endocytic mechanisms, and they indicate that at least in some cell types the non-clathrin-coated endocytosis can be modulated.  相似文献   

10.
The endocytic activity of epithelial cells from the rat epididymis in vitro has been examined by following the uptake of tracer compounds conjugated to proteins. Transferrin-gold and alpha 2-macroglobulin-gold were taken up initially in coated pits, internalized and sequestered into tubular-vesicular structures, multivesicular bodies and, in the case of alpha 2-macroglobulin, into lysosomes. Uptake could be prevented by an excess of unlabeled protein. Studies using 125I-alpha 2-macroglobulin and 125I-transferrin also showed that the uptake of these proteins was specific and could be displaced with increasing amounts of unlabeled protein. In addition, binding of 125I-transferrin to cells was saturable at 4 degrees C. These studies indicate that transferrin and alpha 2-macroglobulin are taken up by receptor-mediated endocytosis. In contrast, a fluid phase marker, bovine serum albumin-gold (BSA-gold), was initially taken up predominantly in uncoated caveolae rather than coated pits, and could not be displaced with excess BSA. By virtue of their charge, polycationized ferritin and unlabeled colloidal gold were taken up and internalized by adsorptive endocytosis, a pathway which is similar to fluid phase endocytosis. The uptake and internalization of alpha 2-macroglobulin and transferrin differed in a number of respects. Uptake and internalization of alpha 2-macroglobulin but not of transferrin was dependent on extracellular calcium. Only alpha 2-macroglobulin was transferred into lysosomes, whereas transferrin was recycled to the cell surface. Although the proton ionophore, monensin, and the transglutaminase inhibitor, dansylcadaverine, did not stop uptake and internalization of either alpha 2-macroglobulin or transferrin, they did prevent the transfer of alpha 2-macroglobulin to lysosomes.  相似文献   

11.
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system.  相似文献   

12.
Characterization of a transferrin-diphtheria toxin conjugate   总被引:3,自引:0,他引:3  
We report here the synthesis and properties of a hybrid toxin prepared by covalently coupling diphtheria toxin to transferrin. The purified material contained two major hybrid protein species and was highly cytotoxic to mouse LMTK- cells in culture, reducing protein synthesis by 50% in 24 h at a concentration of 1 ng/ml. Cytotoxic activity was completely abolished in the presence of exogenous transferrin or anti-transferrin or anti-diphtheria toxin, thus demonstrating that the hybrid toxin was intoxicating cells via their transferrin receptors and that both the diphtheria toxin and transferrin components of the conjugate were necessary for activity. NH4Cl, a drug that elevates the pH within acidic intracellular vesicles, also blocked cytotoxic activity, suggesting that a low intravesicular pH was required for activity. The inhibitory effect of NH4Cl could be abolished by exposing toxin-treated cells to acidic culture medium, further implicating an acid-dependent step in the mechanism of the hybrid toxin action. Studies on the kinetics of intoxication also implied that endocytosis and exposure to a low pH within vesicles were necessary for cytotoxicity. Altogether, the results suggest that the transferrin-diphtheria toxin conjugate binds to transferrin receptors and is internalized into acidic endocytic vesicles. The enzymatic moiety of diphtheria toxin then apparently enters the cytosol in response to the low pH and subsequently arrests protein synthesis.  相似文献   

13.
Inhibition of endocytosis from coated pits by acidification of the cytosol   总被引:8,自引:0,他引:8  
Binding and endocytosis of the ligands transferrin, epidermal growth factor (EGF), and ricin were measured in a number of different cell lines after treatment of cells with compounds that react with SH-groups and under conditions where the cytosolic pH was lowered. N-ethylmalemide and diamide irreversibly inhibited endocytosis of all ligands tested, whereas low pH in the cytosol strongly inhibited endocytosis of transferrin and EGF. Data obtained by electron microscopy indicated that the formation of coated vesicles from coated pits is inhibited in acidified cells. Entry of ricin was much less affected, and ricin endocytosed under these conditions was able to intoxicate the cells. At low pH in the cytosol there was a calcium-dependent increase in the number of transferrin receptors at the cell surface. The increase was even larger in the presence of the calcium ionophore A23187, whereas it was completely blocked by the calmodulin antagonists trifluoperazine and W7. The results show that endocytosis from coated pits can be inhibited in a reversible way by acidification of the cytosol and they suggest that a second pathway of endocytosis exists, possibly involving formation of vesicles from uncoated areas of the membrane.  相似文献   

14.
A hybrid protein of ricin and the enzymatically active fragment A of diphtheria toxin (toxin A) has been synthesized and purified. The diphtheria toxin A fragment of the hybrid protein is shown to enter the cytosol compartment of HeLa cells, its presence assayed by the fall of intracellular elongation factor II (EF-2) and the rise of ADP-ribosylated EF-2. Hybrid entrance to HeLa cells is blocked by lactose which blocks receptor-mediated entry of ricin but not by NH4Cl which blocks the transport of diphtheria toxin. It is concluded that the diphtheria toxin fragment A moiety of the hybrid enters the cell cytosol via the ricin receptor-mediated transport system. The kinetics of intracellular ADP-ribosylation of EF-2 by diphtheria toxin have also been studied. Ribosylation is preceded by a toxin dose-dependent lag period. The data suggest that the time constant responsible for the lag period is in the transport step. Models consistent with these data are discussed.  相似文献   

15.
Nigericin and monensin, ionophores for Na+ and K+, have been found to enhance the cytotoxicities of abrin, ricin, and Pseudomonas aeruginosa exotoxin A in Chinese hamster ovary (CHO) cells. They do not affect the cytotoxicity of diphtheria toxin in the same cell line. Maximal sensitization of the CHO cells toward ricin and Pseudomonas toxin requires preculture of CHO cells in the presence of nigericin. Inhibition of protein synthesis in CHO cells by ricin or Pseudomonas toxin is also enhanced by preculture of CHO cells in the presence of nigericin. These results suggest a common step in the intoxication process of ricin and Pseudomonas toxin, the rate of which is facilitated by pretreatment with nigericin. This step is, however, not shared by the intoxication of CHO cells with diphtheria toxin.  相似文献   

16.
The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-beta-cyclodextrin (MbetaCD) to selectively extract cholesterol from the plasma membrane. MbetaCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MbetaCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MbetaCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MbetaCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.  相似文献   

17.
Shiga toxin (Stx) is internalized by receptor-mediated endocytosis and transported retrogradely to the endoplasmic reticulum from where the enzymatically active part of the toxin is translocated to the cytosol. In this study, we have investigated the effect of polyunsaturated fatty acids (PUFA) on intoxication and retrograde transport of Stx. In HEp-2 cells, PUFA treatment inhibited Stx intoxication by a factor of 10. Moreover, both Stx internalization and endosome-to-Golgi transport were reduced by PUFA and these reductions can together explain the reduced toxicity. Also cholera toxin internalization was reduced by PUFA treatment. Finally, ricin and Pseudomonas exotoxin 1 cytotoxicity were not reduced by PUFA, demonstrating that PUFA do not cause a general block in retrograde transport to the endoplasmic reticulum. In conclusion, these results clearly demonstrate the importance of PUFA for Stx and cholera toxin trafficking.  相似文献   

18.
Biochemical and electron microscopic autoradiographic studies with [125I] ricin have revealed that nigericin-pretreated Chinese hamster ovary cells are more efficient than untreated cells in the internalization of the toxin into the cells. These results suggest that the enhanced rate of internalization of ricin in nigericin-pretreated cells may account for the enhancement of cytotoxicity of ricin in Chinese hamster ovary cells by nigericin.  相似文献   

19.
The glycolipid-binding cytotoxin produced by Shigella dysenteriae 1, Shiga toxin, binds to MDCK cells (strain 1) only after treatment with short-chain fatty acids like butyric acid or with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. The induced binding sites were found to be functional with respect to endocytosis and translocation of toxin to the cytosol. Glycolipids that bind Shiga toxin appeared at both the apical and the basolateral surface of polarized MDCK cells grown on filters, and Shiga toxin was found to be endocytosed from both sides of the cells. This was demonstrated by EM of cells incubated with Shiga-HRP and by subcellular fractionation of cells incubated with 125I-labeled Shiga toxin. The data indicated that toxin molecules are endocytosed from coated pits, and that some internalized Shiga toxin is transported to the Golgi apparatus. Fractionation of polarized cells incubated with 125I-Shiga toxin showed that the transport of toxin to the Golgi apparatus was equally efficient from both poles of the cells. After 1-h incubation at 37 degrees C approximately 10% of the internalized toxin was found in the Golgi fractions. The results thus suggest that glycolipids can be efficiently transported to the Golgi apparatus from both sides of polarized MDCK cell monolayers.  相似文献   

20.
Endocytosis may originate both in coated pits and in uncoated regions of the plasma membrane. In hepatocytes it has been shown that fluid phase endocytosis (here defined as 'pinocytosis') is unaffected by treatments that arrest coated pit-mediated endocytosis, indicating that pinocytosis is primarily a clathrin-independent process. In this study we have tried to determine possible connections between pinocytosis and clathrin-dependent endocytosis in rat hepatocytes by means of subcellular fractionation, electron microscopy, and by assessing the influence of inhibitors of clathrin-dependent endocytosis on pinocytosis. As marker for clathrin-dependent endocytosis was used asialoorosomucoid (AOM) labelled with [(125)I]tyramine cellobiose ([(125)I]TC). [(125)I]TC-labelled bovine serum albumin ([(125)I]TC-BSA) was found to be a useful marker for pinocytosis. Its uptake in the cells is not saturable, and any remnants of [(125)I]TC-BSA associated with the cell surface could be removed by incubating the cells with 0.3% pronase at 0 degrees C for 60 min. The data obtained by electron microscopy and by subcellular fractionation suggested that early after initiation of uptake (<15 min) [(125)I]TC-BSA and [(125)I]TC-AOM were present in different endocytic vesicles. The two probes probably join prior to their entrance in the lysosomal compartment. The relation between endocytosis via coated pits and pinocytosis was also studied with techniques that induced a selective density shift either in the clathrin-dependent pathway (by AOM-HRP) or in the pinocytic pathway (by allowing uptake of AuBSA). Both treatments indicated that the two probes ([(125)I]TC-AOM and [(125)I]TC-BSA) were early after uptake, at least partly, in separate endocytic compartments. The different distribution of the fluid phase marker and the ligand (internalised via coated pits) was not due to a difference in the rate at which they enter a later compartment, since a lowering of the incubation temperature to 18 degrees C, which should keep the probes in the early endosomes, did not affect their early density distribution. Incubation of cells in a hypertonic medium reduced uptake both of [(125)I]TC-AOM and [(125)I]TC-BSA; the uptake of [(125)I]TC-AOM was, however, reduced much more than that of the fluid phase marker. This finding supports the notion that the two probes enter the cells via different routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号