首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Yield comparisons between five white cloverperennial ryegrass mixtures, whose individual components had previously coexisted, and a corresponding set of ten mixtures based on components that had not coexisted disclosed a yield advantage to the former group of 8.5% over a 4-year period. All five clover populations produced their highest yields when associated with their coexisting grass. The coexisting mixtures also yielded more grass in spring, probably due to the exotic origin of the majority of the companion grasses, reinforced by the nitrogen transfer process between clover and grass. The relative proportions of clover attained by the five populations was apparently unaffected by grass companion. These results are briefly discussed in the context of improving the productivity of white clover-perennial ryegrass mixtures.  相似文献   

2.
Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait–productivity relationships. The productivity of 12 pasture mixtures was determined in a 3‐year field experiment. The mixtures were based on either the winter‐active ryegrass (Lolium perenne) or winter‐dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two‐species dominant grass–white clover (Trifolium repens) mixtures. We tested for correlations between community‐weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter‐dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass‐based mixtures, but not across tall fescue‐based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait–productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource‐use complementarity is a necessary prerequisite for trait–productivity relationships.  相似文献   

3.
Elgersma  A.  Schlepers  H.  Nassiri  M. 《Plant and Soil》2000,221(2):281-299
Nitrogen (N) fertiliser and clover cultivar choice affect competition and productivity in grass-clover mixtures. Pure stands and mixtures of perennial ryegrass and white clover cultivars with contrasting growth habits were examined. The aim of this work was to study the effect of repetitive nitrogen (N) application and cultivar combination on competition and productivity, N yield in the harvested herbage, N2 fixation in mixtures and pure stands, and transfer of N from clover to the companion grass. Large-leaved white clover cultivar Alice and small-leaved cv. Gwenda and perennial ryegrass cvs. Barlet (erect) and Heraut (prostrate) were sown in pure stands and as four binary grass-clover mixtures on a sandy soil in 1995. In the mixtures, two levels of N fertiliser were applied: 0 (-N) and 150 and 180 kg ha-1 y-1 N (+N) in 1996 and 1997, respectively, while the grass monocultures received three N levels (0, 140/180 and 280/360 kg ha-1) in 1996 and 1997, respectively. No N was applied to pure clover. The plots were cut five times during 1996 and six times during 1997. Fertiliser N was applied in early spring and after every harvest. The treatments were continued until the summer of 1999. In pure grass, the applied N was effectively recovered. In mixtures, N application affected competition by enhancing grass growth and the overall effect of N application was 17 kg DM per kg N applied in 1996. However, there was no yield response to N fertilizer in 1997, because this was compensated for by a higher clover production in unfertilised mixtures. In 1997, -N mixtures yielded more N than +N mixtures, owing to the higher clover content and N2 fixation. Large-leaved clover cv. Alice was better able to withstand the negative effect of repetitive N application on clover production in mixtures and increased its proportion during the growing season of the second harvest year. In 1997, mixtures with Alice yielded more N than mixtures with Gwenda, but in pure clover swards, there was no cultivar effect on N yield. Also, during the autumn of 1998 and the spring of 1999, the clover content was highest in mixtures with Alice. Harvested N and apparent N2 fixation were almost twice as high in 1997 as in 1996. N yield and apparent N2 fixation were higher in pure clover than in mixtures. In mixtures, the apparent N2 fixation in 1996 was 142 kg N ha-1, irrespective of cultivar or N treatment. In 1997, it was on average 337 kg N ha-1, and higher in -N mixtures and in mixtures with Alice. For each tonne of clover DM in the harvested herbage, 65 and 57 kg N was harvested in 1996 and 1997 in -N mixtures, respectively. The apparent transfer of clover-derived N to grass was on average 29 and 70 kg N ha-1 yr-1 in 1996 and 1997, respectively. It was highest in +N mixtures and highest in mixtures with Gwenda in 1997. In contrast to clover, the grass cultivars were very similar in their productivity and seasonal patterns, despite their contrasting growth habits. Seasonal trends in N yield, N transfer and N recovery are discussed in relation to fertilizer application regimes and variation in production patterns in mixtures and pure stands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Ten contrasting white clover populations were grown as spaced plants, in pure clover swards and in mixed swards with S.23 perennial ryegrass. Four of the populations were also tested for tolerance of low temperatures. In the establishment year, the autumn yields of populations were correlated with leaf size. However, during the severe winter which followed, populations with large leaves, particularly those of Mediterranean origin, suffered extensive stolon kill. This winter damage reduced the spring yields and total annual yields of populations with large leaves, so that leaf size and total annual yield were not correlated in the year after sowing. Stolon kill was positively correlated with autumn growth activity as measured by leaflet size and stolon internode length in October. Stolon kill during winter was correlated with cold tolerance of naturally-hardened stolon apices, assessed in artificial cold tests.  相似文献   

5.

Background and Aims

Current agricultural practices are based on growing monocultures or binary mixtures over large areas, with a resultant impoverishing effect on biodiversity at several trophic levels. The effects of increasing the biodiversity of a sward mixture on dry matter yield and unsown species invasion were studied.

Methods

A field experiment involving four grassland species [two grasses – perennial ryegrass (Lolium perenne) and cocksfoot (Dactylis glomerata) – and two legumes – red clover (Trifolium pratense) and white clover (Trifolium repens)], grown in monocultures and mixtures in accordance with a simplex design, was carried out. The legumes were included either as single varieties or as one of two broad genetic-base composites. The experiment was harvested three times a year over three years; dry matter yield and yield of unsown species were determined at each harvest. Yields of individual species and interactions between all species present were estimated through a statistical modelling approach.

Key Results

Species diversity produced a strong positive yield effect that resulted in transgressive over-yielding in the second and third years. Using broad genetic-base composites of the legumes had a small impact on yield and species interactions. Invasion by unsown species was strongly reduced by species diversity, but species identity was also important. Cocksfoot and white clover (with the exception of one broad genetic-base composite) reduced invasion, while red clover was the most invaded species.

Conclusions

The results show that it is possible to increase, and stabilize, the yield of a grassland crop and reduce invasion by unsown species by increasing its species diversity.Key words: Cocksfoot, Dactylis glomerata, diversity effect, invasion, legumes, perennial ryegrass, Lolium perenne, red clover, Trifolium pratense, simplex design, statistical modelling, transgressive over-yielding, white clover, T. repens  相似文献   

6.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

7.
A perennial ryegrass sward was established in the autumn of 1989 in an enclosed 0.3 ha site and was exposed to captive wild rabbit (Oryctolagus cuniculus) grazing. Rabbit numbers were varied from 16 rabbits ha-1 in winter to 55 rabbits ha-1 corresponding to natural fluctuations in the field. The original sward was grown for three seasons (1989/1990 to 1990/1991) and a range of grazing regimes imposed. In 1989/1990 four grazing regimes were arranged in a replicated split block design in the experimental area. These were ungrazed, winter grazed, spring grazed and totally grazed. In the second year of the experiment all plots were exposed to grazing with the exception of the originally protected plots. This was to examine the effects of longer-term grazing damage on a ryegrass sward. In the final year half of all treatments were protected to study recovery of a sward which had been damaged previously. The remainder of the plots were exposed to grazing. Three cuts were harvested in each year and the productivity assessed in terms of yield and botanical composition. There was a significant reduction in ryegrass proportion in grazed swards following the first winter of grazing, while clover, other grasses and weeds were enhanced. The promotion of clover content in grazed swards was a feature throughout the 3 yr of the study. In the second year, protection of grazed swards led to a restoration of yields, although the botanical composition remained altered. The exposure of previously ungrazed plots in the final year of the experiment showed that these swards were particularly attractive to rabbits and they suffered the greatest yield losses relative to the protected plots at the first cut in 1991. In this year dry weather conditions were experienced following the first cut and demonstrated that yield losses are exacerbated when rabbit grazing is compounded with adverse growing conditions. The results overall indicate that protection of ryegrass swards at the establishment phase is important, but that a degree of recovery is possible by providing protection at a later stage, although the ryegrass component is still impaired in swards which suffer early damage.  相似文献   

8.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

9.
Mixing the ryegrass mosaic virus (RMV) resistant perennial ryegrass (Lolium perenne) cv. Endura with the susceptible Italian ryegrass (L. multiflorum) cv. RvP decreased infection of RvP wth RMV from 37% when grown alone to 22% when mixed. However, Endura yielded less than RvP and there was no yield benefit from mixing the two cultivars. Mixing red clover (Trifolium pratense) cv. Hungaropoly with RvP had no detectable effect on RMV incidence in RvP but did decrease the incidence of red clover necrotic mosaic virus in Hungaropoly from 9% to 1% and of white clover mosaic virus from 53-5% to 41%. The yield of the mixture was equal to that of RvP grown alone but given nitrogen fertiliser. The numbers of eriophyid mites, including Abacarus hystrix the vector of RMV, on ryegrass leaves were similar in pure and mixed swards. It is concluded that with herbage crops, the common practice of sowing mixtures of species may help control virus diseases.  相似文献   

10.
In Mediterranean countries, forage grasses and legumes are commonly grown in mixture because of their ability to increase herbage yield and quality compared with monocrop systems. However, the benefits of intercropping over a monocrop system are not always realized because the efficiency of a grass–legume mixture is strongly affected by agronomic factors. The present study evaluated productivity, N2 fixation, N transfer, and N recovery of berseem clover (Trifolium alexandrinum) grown in pure stand and in mixture with annual ryegrass (Lolium multiflorum) under high or low defoliation frequencies and varying plant arrangements (sowing in the same row or in alternating rows). On average, the berseem–ryegrass mixtures resulted in a greater yield and N yield than the monocrops. When mixed together, ryegrass was more efficient than berseem at absorbing soil N, increasing the reliance of berseem on N2 fixation. Both defoliation management and plant arrangement affected forage yield and the quality of the mixture, modifying the proportion of the two components, the N content of the forage, and the symbiotic N2 fixation of the legume. Reducing the proximity between plants of the two species may benefit the weaker component of the mixture. No apparent transfer of fixed N from berseem to ryegrass was detected.  相似文献   

11.
混播草地不同种群再生性的研究   总被引:15,自引:0,他引:15  
在不同刈割频率和时间尺度下 ,对混播草地多年生黑麦草 (Lolium perenne)分蘖数和叶片生长、白三叶 (Trifoliumrepens)分枝数和匍匐茎生长及不同种群年产量和组分进行了连续 3年的监测研究 .结果表明 ,刈割能刺激黑麦草叶片、白三叶匍匐茎生长和分枝数发生 ,保持混播草地黑麦草和白三叶的适宜比和稳定共存 ,提高草地年生产力 ,但不同刈割频率和刈割时间对其影响差异不显著 (P >0 .0 5 ) .黑麦草叶片生长对 6月刈割效果比 8月明显 ,而白三叶匍匐茎生长则与之相反 ,黑麦草产量主要取决于叶片生长 ,白三叶产量主要取决于匍匐茎分枝数 .刈割的黑麦草、白三叶产量组分比分别为 5 0 %、15 % ,比试验前约低 10 %、5 % ,而CK为 39%、6 % .  相似文献   

12.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

13.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

14.
Simulated swards of two populations of perennial ryegrass cv.S 23 selected for contrasting rates of mature leaf tissue respirationwere grown in a glasshouse. From establishment, the swards weresubject to three levels of nitrogen supply (14.5, 32 and 173.5ppm N) and from the first harvest 7 weeks after sowing, to threecutting frequencies (at intervals of 1, 3, and 6 weeks). Throughout the 18-week experiment, the herbage yield and themean tiller weight of the slow-respiring population were 10%greater on average than those of the fast-respiring population.Increasing nitrogen supply (from 14.5 to 173.5 ppm N) enhancedthe yield advantage of the slower-respiring population—moreso under infrequent cutting (from nothing to 22%) than underfrequent cutting (from 6 to 13%). Both maximum absolute yields,and the greatest yield advantage of the slow-respiring populationover the fast, were achieved when high nitrogen was combinedwith infrequent defoliation. Lolium perenne, perennial ryegrass cv. S23, respiration, nitrogen defoliation, simulated sward, dry-matter production, monoculture, population  相似文献   

15.
Italian ryegrass and a late-flowering red clover were grown together, with abundance of water and nutrients for both. It was found that even a small number of ryegrass plants reduced the growth of clover by 30%. This effect varied very little with increasing density of the clover crop.
The presence of clover reduced the ryegrass crop by an amount diminishing as the density of the ryegrass was increased. In a sparse crop of ryegrass, clover reduced the growth of the grass considerably more than did barley under comparable conditions.
There is no evidence of any specific effect of the roots of one plant on the other. When ample nitrogen is available the clover tends to take some that would otherwise be available for the grass and does not provide the grass with additional nitrogen.  相似文献   

16.
Summary Three legume species (alfalfa, red clover, and birdsfoot trefoil) in combination with five grass species (timothy, bromegrass, red fescue, tall fescue, and orchardgrass) were used to study N transfer in mixtures, using the 15N dilution technique. The advantage of grass-legume mixtures was apparent. Total herbage and protein yields of grasses in mixtures were higher than those alone, especially at the later cuts. This benefit of mixed cropping is mainly due to N transfer from legumes to associated grasses. N2-fixation and N transfer by alfalfa rated highest, red clover intermediate, and birdsfoot trefoil lowest. The importance of each pathway of N transfer from legumes appeared to differ between species. Alfalfa and red clover excreted more N than trefoil, while the latter contributed more N from decomposition of dead nodule and root tissue. The greatest advantage from a grass-legume mixture, with respect to the utilization of N released from the legume, varied with early maturing tall fescue (Kentucky 31), orchardgrass (Juno), and bromegrass (Tempo), to intermediate timothy (Climax), and least with late maturing red fescue (Carlawn). Contribution no. 817 of the Ottawa Research Station.  相似文献   

17.
B. F. Bland 《Plant and Soil》1968,28(2):217-225
Summary and conclusions 1. Possible sources of free nitrogen are enumerated and evaluation has been attempted in respect of a West of Scotland soil.2. The total annual contribution of nitrogen to the soil from all free sources could be of the order 100–120 lb N per acre (=101–130 kg N per ha).3. Assuming that two thirds of this is harvestable in grassland then 66–80 lb N may be expected in the absence of added fertilizer nitrogen.4. The observed value for the nitrogen uptake by the grass component in a mixed sward (perennial ryegrass and white clover) in its third year (1965) amounted to 66 lb/N/acre.5. The uptake of nitrogen by perennial ryegrass grown alone without added fertilizer amounted to 89 and 65 lb in 1964 and 1965 respectively. These results corroborate the values for estimated nitrogen contribution outlined in (3) above and also agree well with the experimental findings of (4).6. Since the amount of nitrogen in the grass monoculture was similar to that obtained by the grass when grown in association with clover (1965 Data) it would therefore indicate that white clover did not materially affect the nitrogen uptake by perennial ryegrass.  相似文献   

18.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

19.
Nassiri  M.  Elgersma  A. 《Plant and Soil》2002,246(1):107-121
The effects of applied nitrogen (N) on dynamics of regrowth, dry matter (DM) allocation and leaf characteristics of grass and clover were investigated. Binary mixtures and monocultures of the diploid perennial ryegrass cultivars Barlet (erect) and Heraut (prostrate) and the white clovers cvs. Alice (large-leaved) and Gwenda (small-leaved) were established in a field experiment. Grass monocultures received three levels of N application (0, 140 or 280 kg N ha–1), and mixtures 150 kg N ha–1 (+N) or no N (–N). N was applied split over the season. Application of N reduced the average clover content in the DM of the mixtures from 43 to 12%. Due to defoliation, clover lost relatively more leaf area and less DM than grass, leading to a lower clover fraction in the leaf area index (LAI) of the stubble at the start of the next regrowth. In the –N mixtures, the clover fraction of the biomass and of the LAI increased within successive regrowth periods. In the +N mixtures, large-leaved Alice maintained its content during summer, mainly due to its greater petiole length which increased in response to N. The opposite was observed for Gwenda. At each harvest, the content of small-leaved Gwenda in the LAI and DM was lower than in the stubble at the start of regrowth. The allocation of DM to the petioles of Alice led to a decrease in the leaf weight ratio (LWR) in the +N mixtures, while Gwenda had a higher LWR and specific leaf area (SLA) in the +N mixtures than in the –N mixtures. There was little or no effect of ryegrass cultivar on competition with white clover.  相似文献   

20.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号