首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

2.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

3.
A high-performance-liquid-chromatography (h.p.l.c.) separation was developed, which resolves isomers of inositol monophosphate (IP), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) in a single run. In GH3 cells labelled with [3H]inositol, treated with Li+ and thyrotropin-releasing hormone (TRH), radiolabelled components identified as inositol 1-phosphate (I1P), inositol 2-phosphate (I2P), inositol 4-phosphate (I4P), inositol 1,4-bisphosphate [I(1,4)P2], inositol 1,3,4-trisphosphate [I(1,3,4)P3] and inositol 1,4,5-trisphosphate [I(1,4,5)P3] are present, as are multiple unidentified IP2 peaks. After TRH stimulation, both I1P and I4P increase, the increase in I4P preceding that of I1P; I(1,4)P2 and an unknown IP2 increase; and both I(1,3,4)P3 and I(1,4,5)P3 increase, the increase in I(1,4,5)P3 being rapid and transient, whereas the increase in I(1,3,4)P3 is slower and more sustained. The most rapidly appearing inositol phosphates produced after TRH stimulation are I(1,4)P2 and I(1,4,5)P3.  相似文献   

4.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

5.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

6.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

7.
The metabolism of [3H]inositol (1,4,5)-trisphosphate was followed in permeabilized bovine adrenal glomerulosa cells. At low Ca++ concentration (pCa = 7.2), more than 90% of [3H]inositol (1,4,5)-trisphosphate had disappeared within 2 min, while two other metabolites, [3H]inositol (1,3,4)-trisphosphate and [3H]inositol (1,3,4,5)-tetrakisphosphate appeared progressively. At higher Ca++ concentrations (pCa = 5.7 and 4.8), the formation of these two metabolites was markedly increased, but completely abolished if the medium was ATP-depleted. The peak levels for the generation of [3H]inositol (1,3,4,5)-tetrakisphosphate (1 min) preceded those of [3H]inositol (1,3,4)-trisphosphate and were closely correlated. These results suggest that, in adrenal glomerulosa cells, the isomer inositol (1,3,4)-trisphosphate is generated from inositol (1,4,5)-trisphosphate via a calcium-sensitive and ATP-dependent phosphorylation/dephosphorylation pathway involving the formation of inositol (1,3,4,5)-tetrakisphosphate.  相似文献   

8.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

9.
To investigate the response to catecholamine stimulation of adult cardiac myocytes and the metabolism of inositol (1,4,5)-trisphosphate (1,4,5-IP3) and inositol (1,3,4,5)-tetrakisphosphate (IP4), we have employed a procedure developed in our laboratory to directly measure the mass of inositol phosphates after separation of individual isomers of inositol phosphates by high performance liquid chromatography. Control, unstimulated myocytes, contained low levels of inositol (1,4)-bisphosphate (1,4-IP2), inositol (1,3)-bisphosphate (1,3-IP2), inositol (3,4)-bisphosphate (3,4-IP2), inositol (1,3,4)-trisphosphate (1,3,4-IP3), 1,4,5-IP3 and IP4. Stimulation with norepinephrine for 30 seconds produced peak 1,4,5-IP3 and IP4 levels which rapidly returned to basal values by 60 seconds of norepinephrine stimulation. 1,4-IP2, 1,3-IP2 and 1,3,4-IP3 were increased markedly but only after stimulation with norepinephrine for 60 seconds. These results indicate a rapid yet transient increase in 1,4,5-IP3 and IP4 in response to norepinephrine stimulation and are the first quantitative measurements of the isomers of inositol phosphates in cardiac tissue.  相似文献   

10.
A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metabolism of these two isomers of inositol trisphosphate in carbachol-stimulated rat parotid glands. Fragments of glands were pre-labelled with myo-[2-3H]inositol, washed, and then stimulated with carbachol. At 5s after stimulation a clear increase in inositol 1,4,5-trisphosphate was detected, with no significant increase in inositol 1,3,4-trisphosphate. After this initial lag however, inositol 1,3,4-phosphate rose rapidly; by 15s it predominated over inositol 1,4,5-trisphosphate, and continued to rise so that after 15 min it was at 10-20 times the radiolabelling level of the 1,4,5-isomer. In contrast, after the initial rapid rise (maximal within 15s), inositol 1,4,5-trisphosphate levels declined to near control levels after 1 min and then rose again very gradually over the next 15 min. When a muscarinic blocker (atropine) was added after 15 min of carbachol stimulation, inositol 1,4,5-trisphosphate levels dropped to control levels within 2-3 min, whereas inositol 1,3,4-trisphosphate levels took at least 15 min to fall, consistent with the kinetics observed earlier for total parotid inositol trisphosphates [Downes & Wusteman (1983) Biochem. J. 216, 633-640]. Phosphatidylinositol bisphosphate (PtdInsP2) from stimulated and control cells were degraded chemically to inositol trisphosphate to seek evidence for 3H-labelled PtdIns(3,4)P2. No evidence could be obtained that a significant proportion of PtdInsP2 was this isomer; in control tissues it must be less than 5% of the total PtdInsP2 radiolabelled by myo-[2-3H]inositol. These data indicate that, provided that inositol 1,4,5-trisphosphate is studied independently of inositol 1,3,4-trisphosphate, the former shows metabolic characteristics consistent with its proposed role as a second messenger for calcium mobilization. The metabolic profile of inositol 1,3,4-trisphosphate is entirely different, and its function and source remain unclear.  相似文献   

11.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

12.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

13.
Evidence is presented to show that acid extracts of avian erythrocytes prelabelled for 24-48 h with myo-[3H]inositol contain the following myo-[3H]inositol trisphosphates (expressed as a percentage of total myo-[3H]inositol trisphosphates extracted): 36% myo-[3H]inositol 1,4,5-trisphosphate; 33.7% myo-[3H]inositol 1,3,4-trisphosphate; 13% myo-[3H]inositol 3,4,5-trisphosphate; 9.7% myo-[3H]inositol 3,4,6-trisphosphate; 4.4% myo-[3H]inositol 1,4,6-trisphosphate and 3.3% myo-[3H]inositol 1,3,6-trisphosphate. The only phosphatidyl-myo-[3H]inositol bisphosphate that could be detected in [3H]Ins-prelabelled avian erythrocytes was phosphatidyl-myo-[3H]inositol 4,5-bisphosphate. Cellular myo-[3H]inositol 3,4,5-trisphosphate may be synthesized by dephosphorylation of myo-[3H]inositol 3,4,5,6-tetrakisphosphate. D- and L-myo-[3H]inositol 1,4,6-trisphosphate and D- and L-myo-[3H]inositol 1,3,6-trisphosphate may be dephosphorylation products of myo-[3H]inositol 1,3,4,6-tetrakisphosphate.  相似文献   

14.
Angiotensin stimulates rapid and prominent increases in inositol polyphosphates and their metabolites in bovine glomerulosa cells labeled with [3H]inositol. In addition to the early formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4-trisphosphate (Ins-1,3,4-P3), as well as their intermediate product, inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), delayed increases in two new InsP4 isomers were consistently observed by high resolution high performance liquid chromatography. Studies on the metabolism of purified Ins-1,3,4,5-P4 preparations, labeled with [3H]inositol and 32P to monitor sites of dephosphorylation, were performed in permeabilized glomerulosa cells. In addition to rapid degradation of Ins-1,3,4,5-P3 to Ins-1,3,4-P3 and then to Ins-3,4-P2, there was delayed formation of one of the putative InsP4 isomers observed during AII stimulation in intact cells. The kinetics of formation of the new InsP4 isomer, and the lack of phosphate in its 5 position based on isotope ratios, were consistent with its origin from Ins-1,3,4-P3. This was confirmed by the conversion of [3H]Ins-1,3,4-P3 to the new InsP4 isomer in permeabilized cells by a kinase distinct from that which phosphorylates Ins-1,4,5-P3. These results have demonstrated that the dephosphorylation sequence of Ins-1,4,5-P3 metabolism is accompanied by a complex cycle of higher phosphorylations with formation of new intermediates of potential significance in cellular regulation.  相似文献   

15.
We investigated the effects of new inositol 1,4,5-trisphosphate analogues on the release of Ca2+ from isolated vacuoles of Neurospora crassa. Tri-O-butyryl-inositol 1,4,5-trisphosphate and a set of cis,cis-cyclohexane 1,3,5-triol bis-(CHT-P2) and trisphosphates (CHT-P3) gave an increase in free Ca2+ as measured directly with fura-2, a Ca2(+)-chelator. However, inositol 1,4-bisphosphate, 6-O-palmitoyl-inositol 4,5-bisphosphate and trans-cyclohexane 1,2-diol bisphosphate (trans CHD-P2) did not induce Ca2(+)-release. These results suggest that the 1,5-bisphosphate position in inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is the only essential arrangement for receptor binding to vacuoles of Neurospora crassa. The structures of these analogues are discussed on the basis of a general concept for the design of new Ins 1,4,5-P3 analogues.  相似文献   

16.
The accumulation of inositol polyphosphates in the cerebellum in response to agonists has not been demonstrated. Guinea pig cerebellar slices prelabeled with [3H]inositol showed the following increases in response to 1 mM serotonin: At 15 s, there was a peak in 3H label in the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], decreasing to a lower level in about 1 min. The level of 3H label in the putative second-messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] increased rapidly up to 60 s and increased slowly thereafter. The accumulation of 3H label in various inositol phosphate isomers at 10 min, when steady state was obtained, showed the following increases due to serotonin: inositol 1,3,4-trisphosphate [Ins(1,3,4)P3], eight-fold; Ins(1,3,4,5)P4, 6.4-fold; Ins(1,4,5)P3, 75%; inositol 1,4-bisphosphate [Ins(1,4)P2], 0%; inositol 3,4-bisphosphate, 100%; inositol 1-phosphate/inositol 3-phosphate, 30%; and inositol 4-phosphate, 40%. [3H]Inositol 1,3-bisphosphate was not detected in controls, but it accounted for 7.2% of the total inositol bisphosphates formed in the serotonin-stimulated samples. The fact that serotonin did not increase the formation of Ins(1,4)P2 could be due to the fact that Ins(1,4)P2 is rapidly degraded or that Ins(1,4,5)P3 is metabolized primarily by Ins(1,4,5)P3-3'kinase to form Ins(1,3,4,5)P4. In the presence of pargyline (10 microM), [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 levels were increased, even at 1 microM serotonin. Ketanserin (7 microM) completely inhibited the serotonin effect, indicating stimulation of serotonin2 receptors. Quisqualic acid (100 microM) also increased the levels of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3, but the profile of these increases was different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   

18.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

19.
Inositol 1,3,4,5-tetrakisphosphates (Ins(1,3,4,5)P4), 32P-labelled in positions 4 and 5 were prepared enzymatically, using [4-32P]-phosphatidylinositol 4-phosphate (PtdInsP) and [5-32P]phosphatidylinositol 4,5-bisphosphate (PtdInsP2) as substrates, respectively. Degradation studies of Ins(1,3,4,5)P4, using an enriched phosphatase preparation from porcine brain cytosol, led to the formation of two inositol trisphosphate isomers which were identified as inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). This novel degradation pathway of Ins(1,3,4,5)P4 to Ins(1,4,5)P3 provides an additional source for the generation of Ins(1,4,5)P3, involving a 3-phosphatase.  相似文献   

20.
Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]. DEAE-cellulose chromatography of the soluble fraction separated the phosphatase activities into three peaks. The first hydrolysed both Ins(1,3,4,5)P4 and inositol 1,4,5-trisphosphate, the second inositol 1-phosphate and the third Ins(1,3,4)P3 and inositol 1,4-bisphosphate, [Ins(1,4)P2]. Further purification of the third peak on either Sephacryl S-200 or Blue Sepharose could not dissociate these two activities [i.e. with Ins(1,4)P2 and Ins(1,3,4)P3 as substrates]. The dephosphorylation of Ins(1,3,4)P3 could be inhibited by the addition of Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号